

Transcriptomic analyses of in vitro flavivirus- or coronavirus-infected cells

Discovery Team, QIAGEN Digital Insights

Legal disclaimer

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Agenda

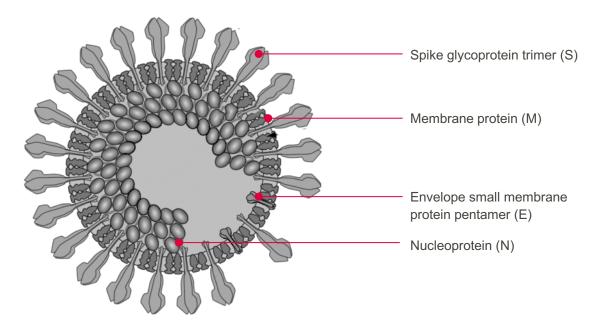
Brief overview on flavivirus and coronavirus

QIAGEN Sample to Insight

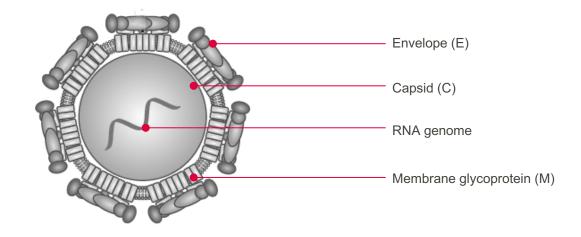
Transcriptomic analyses of in vitro flavivirus- or coronavirus-infected cells using QIAGEN CLC Genomics Workbench and Genomics Cloud Engine

From QIAGEN CLC Genomics Workbench to QIAGEN IPA: Highlight the biology of flavivirus or coronavirus infection in vitro

Discover hidden biology


Conclusions

6


QIAGEN

Coronavirus (SARS-CoV-1, SARS-CoV-2) and Flavivirus (DENV, WNV) virions

SARS-CoV-1, SARS-CoV-2

Dengue virus, West Nile virus

Positive SS-RNA, enveloped, 80–160 nm in size, 27–32 Kb, 4 S, 16 NS and 9 accessory proteins (29 proteins in total)

Adapted from ViralZone 2020 SIB Swiss Institute of Bioinformatics: https://www.viprbrc.org/brc/home.spg?decorator=corona_ncov Positive SS-RNA, enveloped, 40–50 nm in size, 10 Kb, 3 S and 7 NS proteins (10 proteins in total)

Adapted from Pierson, T.C. and Diamond, M.S. (2020) The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812.

Background on SARS-CoV-1 and SARS-CoV-2 coronaviruses

SARS-CoV-1, SARS-CoV-2 (Coronavirus, Coronaviridae)

Worldwide COVID-19 pandemic (>22 million cases, >780,000 deaths) caused by SARS-CoV-2 (as of August 19, 2020)*

- Highly pathogenic, fatality rate: 1–3%
- Infection of airway epithelium cells mainly by airborne droplets
- Hypercytokinemia, severe inflammation, etc.
- Cases with mild symptoms: 80–85%
- Severe cases: 10–15% of cases exhibit severe pneumonia and respiratory failure requiring ICU hospitalization and mechanical ventilation; death rate up to 25%
- Severity correlates with many factors (age, gender, race and co-morbidities such as heart diseases, lung diseases, kidney diseases, type II diabetes and obesity)

Biomedical research response:

- Extremely intensive area of research, some progress, but no highly effective therapies or vaccines for COVID-19 yet.
 - August 19, 2020: 2103 trials, 8 completed with results (<u>https://www.covid19-trials.com</u>)
 - August 19, 2020: 34 vaccine trials in phase I to III, (<u>https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/</u>)

*Johns Hopkins University, Coronavirus Resource Center: https://coronavirus.jhu.edu/map.html

Background on Dengue virus and West Nile arboviruses

DENV and WNV (Flavivirus, Flaviviridae)

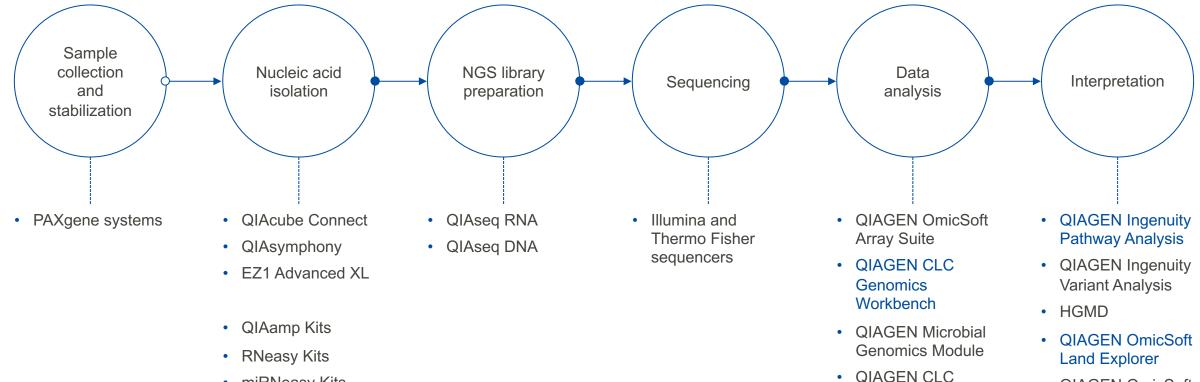
Global spread, epidemic transmission

- Both are arboviruses (arthropods are the vectors: mosquitoes)
- Infection of myeloid cells

DENV

- Mild to severe disease, (390 million total infections), 100 million clinically apparent cases and 500,000/year severe dengue cases, 22,000 deaths and 2.5 billion at risk
- Visceral and hemorrhagic diseases (vascular leakage, thrombocytopenia, shock syndrome, etc.)
- Denvaxia the only live attenuated vaccine, partially effective against DENV

WNV


- Induces neurological diseases (encephalitis, meningitis, cognitive impairment, seizure disorders and paralysis)
- 80% asymptomatic, but fatality rate for symptomatic cases is 10%
- Severity correlate with many factors (age, co-morbidities, genes polymorphisms, immune status, etc.)
- Currently, no WNV vaccines or antiviral treatments are approved for human use

QIAGEN Sample to Insight

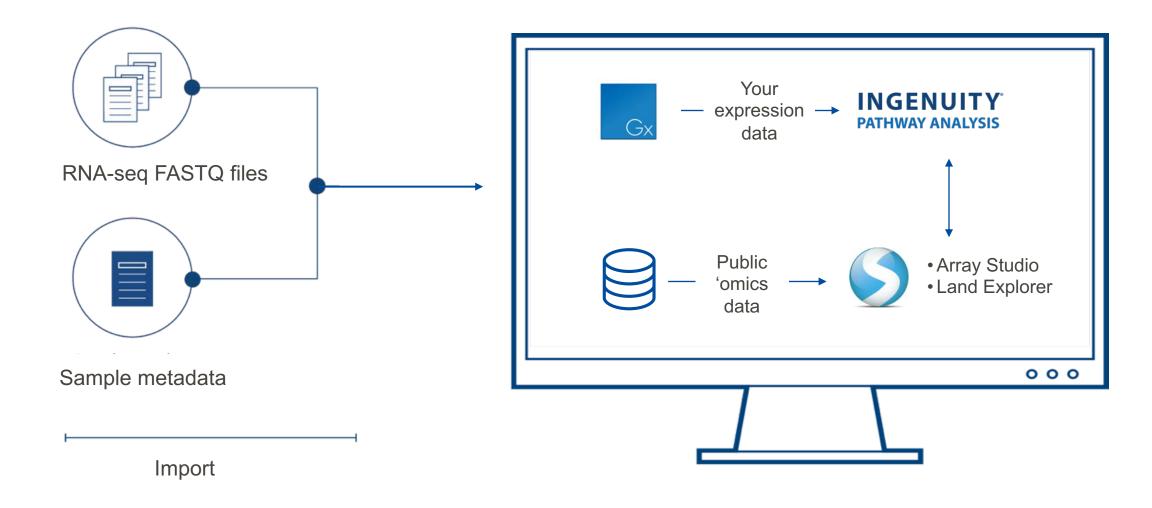
Transcriptomic analyses of in vitro flavivirus- or coronavirus-infected cells

QIAGEN Sample to Insight solution

- miRNeasy Kits
- exoRNeasy Kits

- QIAGEN OmicSoft
 DiseaseLand
- QIAGEN OmicSoft
 OncoLand
- QIAGEN OmicSoft GeneticsLand

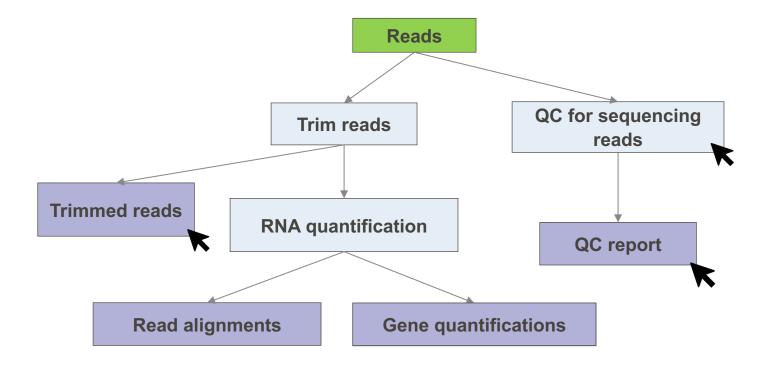
Main Workbench


Genome Finishing

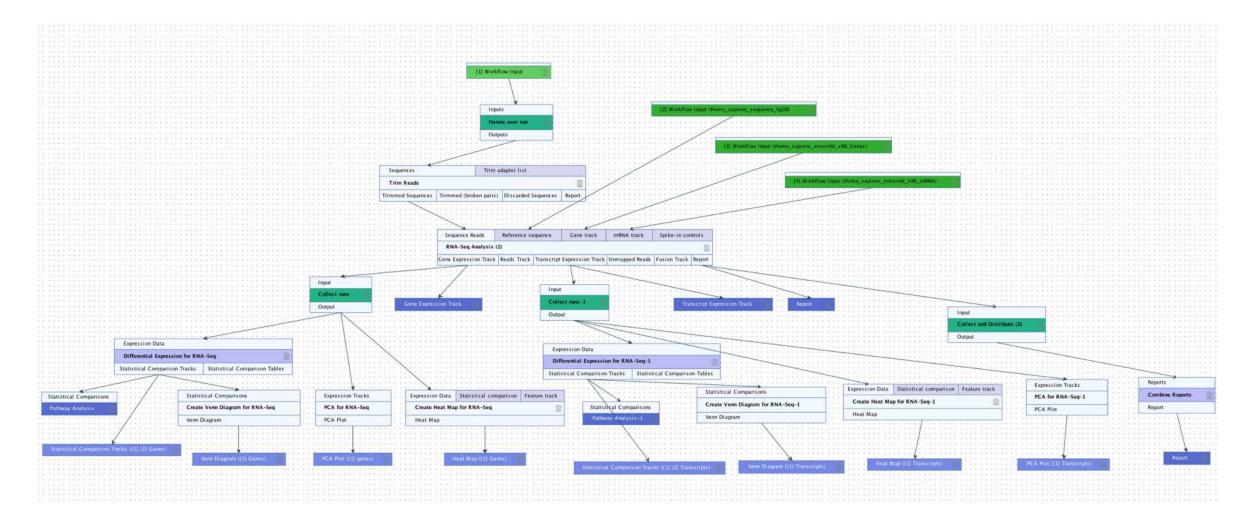
QIAGEN CLC

Module

QIAGEN CLC Genomics Workbench to QIAGEN IPA & QIAGEN OmicSoft Land Explorer



An example workflow for RNA-seq


Customizable drag-and-drop workflow

- It can adapt to simple or sophisticated workflows
- It can produce intermediate files

Analysis of host response in QIAGEN CLC Genomics Workbench/Genomics Cloud Engine

Workflow metadata

Rows: 39	Metadata										Filter
Batch identifier	Sample Name	Experiment	Cell_Line	infection	Time_p	molecule_su	Instrument	LibraryL	Organism	Produced by	From output
SRR11549982	GSM4477899	SRX8119738	Calu3	mock	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seg Analysis (2)	Gene Expression Track
SRR11549982	GSM4477899	SRX8119738	Calu3	mock	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549982	GSM4477899	SRX8119738	Calu3	mock	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549995	GSM4477912	SRX8119751	Calu3	SARS-CoV-1	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549995	GSM4477912	SRX8119751	Calu3	SARS-CoV-1	24h	polyA RNA		SINGLE	Homo sapiens		Transcript Expression Track
SRR11549995	GSM4477912	SRX8119751	Calu3	SARS-CoV-1	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549993	GSM4477910	SRX8119749	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549993	GSM4477910	SRX8119749	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549993	GSM4477910	SRX8119749	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549997	GSM4477914	SRX8119753	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seg Analysis (2)	Gene Expression Track
SRR11549997	GSM4477914	SRX8119753	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seg Analysis (2)	Transcript Expression Track
SRR11549997	GSM4477914	SRX8119753	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549998	GSM4477915	SRX8119754	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549998	GSM4477915	SRX8119754	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549998	GSM4477915	SRX8119754	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seg Analysis (2)	Report
SRR11549987	GSM4477904	SRX8119743	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seg Analysis (2)	Gene Expression Track
SRR11549987	GSM4477904	SRX8119743	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549987	GSM4477904	SRX8119743	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549994	GSM4477911	SRX8119750	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549994	GSM4477911	SRX8119750	Calu3	SARS-CoV-2	24h	polyA RNA		SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549994	GSM4477911	SRX8119750	Calu3	SARS-CoV-2	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549988	GSM4477905	SRX8119744	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549988	GSM4477905	SRX8119744	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549988	GSM4477905	SRX8119744	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
SRR11549996	GSM4477913	SRX8119752	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeq 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Gene Expression Track
SRR11549996	GSM4477913	SRX8119752	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Transcript Expression Track
SRR11549996	GSM4477913	SRX8119752	Calu3	SARS-CoV-1	24h	polyA RNA	NextSeg 500	SINGLE	Homo sapiens	RNA-Seq Analysis (2)	Report
										PCA for RNA-Seq	PCA Plot ({1} genes)
										PCA for RNA-Seq-1	PCA Plot ({1} Transcripts)
											Statistical Comparison Tracks ({1} {2} Genes)
											Statistical Comparison Tracks ({1} {2} Transcript
										Create Heat Map for RNA	
										Create Heat Map for RNA	
										Combine Reports	Report
										Create Venn Diagram for	

Output from QIAGEN CLC Genomics Workbench

Expression tracking at gene or transcript level

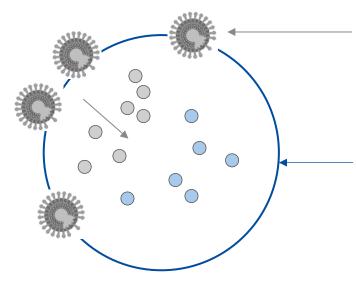
GSE148729 SRP256479 SARS-CoV-1 SARS-CoV-2

💯 Samples

A JN SARASCoV1 SARASCoV2 Analyze one Iterate Collect GE TE

💯 Workflow Result Metadata

- 👬 SRR11549982 (GE)
- **SRR11549982 (TE)**
- SRR11549982 (RNA-Seq report)
- SRR11549995 (GE)
- **SRR11549995** (TE)
- SRR11549995 (RNA-Seq report)


Differential expression profiling at gene and transcript level: SARS-CoV-1/-2 vs. mock

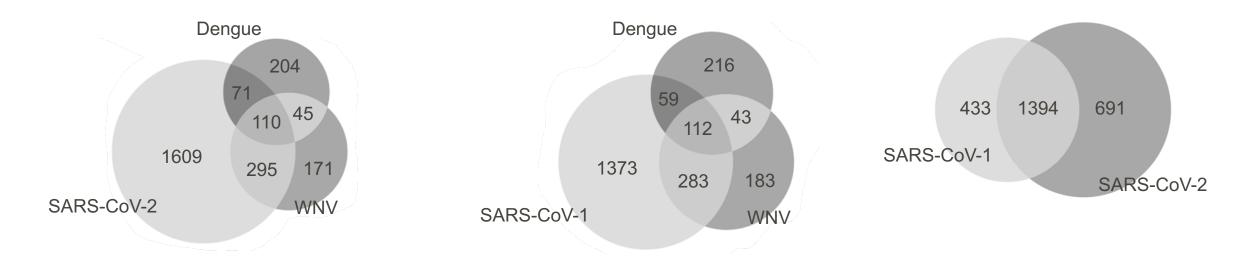
🔛 PCA for RNA-Seq genes

- PCA for RNA-Seq Transcripts
- ▲ SARS-CoV-1 vs. mock SRR11549995 (GE) Genes
- ▲ SARS-CoV-2 vs. mock SRR11549995 (GE) Genes
- ▲ SARS-CoV-1 vs. mock SRR11549997 (TE) Transcripts
- ▲ SARS-CoV-2 vs. mock SRR11549997 (TE) Transcripts
- 4 Heat Map for RNA-Seq Genes
- Heat Map for RNA-Seq Transcripts
- SRR11549981 (Combined report)
- \delta Venn Diagram Genes
- 🥙 Venn Diagram Transcripts

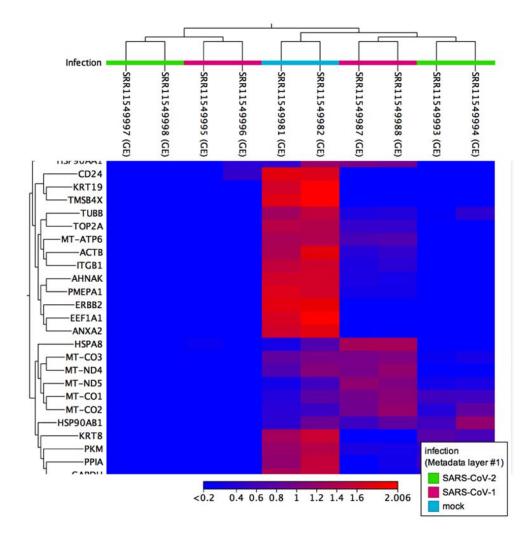
The battle of virus versus host

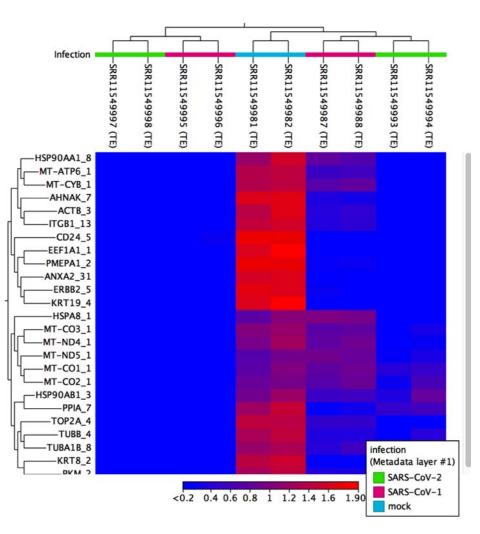
Virus is trying to

- Shut down the host's anti-viral activities
- Boost host activities needed for replication


Host is trying to

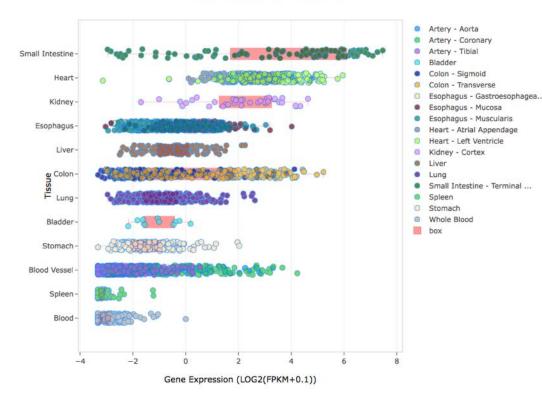
- Increase anti-viral responses
- Starve virus of resources


The transcriptome is a snapshot of these opposing efforts at a point in time.

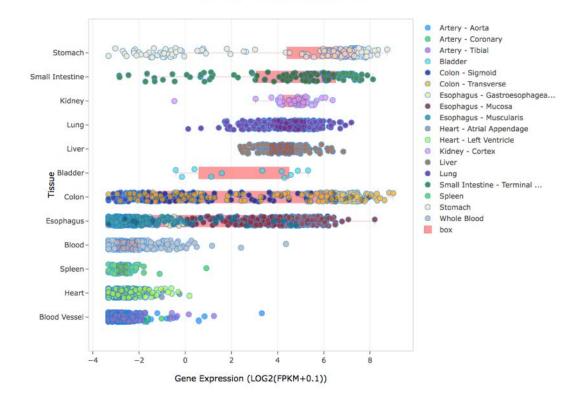

Impact on differential gene expression by each virus

Differentially Expressed Genes p<0.05, Fold change > 1.5 , min expression >5												
GEO#	virus	cells	species	tissue	Instrument	Library Layout	ΜΟΙ	4 hour	12 hour	24 hour	36 hour	virus
GSE148729	SARS-CoV-1	Calu3	Human	Lung	NextSeq500	Single	0.3	88	386	1827		SARS-CoV-1
GSE148729	SARS-CoV-2	Calu3	Human	Lung	NextSeq500	Single	0.3	230	1314	2085		SARS-CoV-2
GSE84285	Dengue	A549	Human	Lung	HiSeq4000	Paired	10			430	1094	Dengue
GSE138841	WNV	A549	Human	Lung	HiSeq1500	Paired	5			621		WNV
GSE138841	WNV (with TRIM6KO)	A549	Human	Lung	HiSeq1500	Paired	5			2151		WNV (with TRIM6KO)

Heatmap of RNA-seq genes: SARS-CoV-1 or SARS-CoV-2 vs. mock



Similarities of molecular patterns after in vitro infection with flavivirus or coronavirus

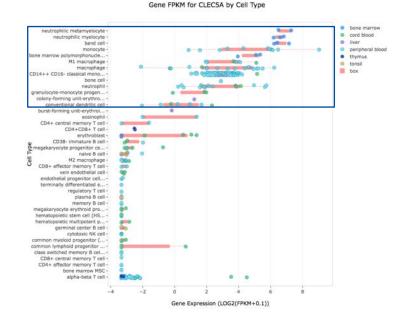

Expression in lung, kidney, gut and heart tissues and blood vessels (target organs in COVID-19)

ACE2 is receptor, expression in tissues (GTEx-B38)

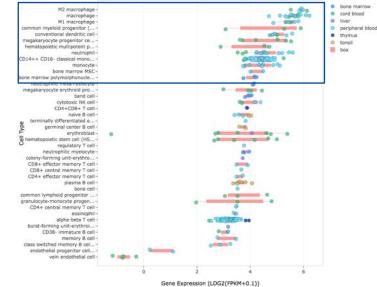
Gene FPKM for ACE2 by Tissue

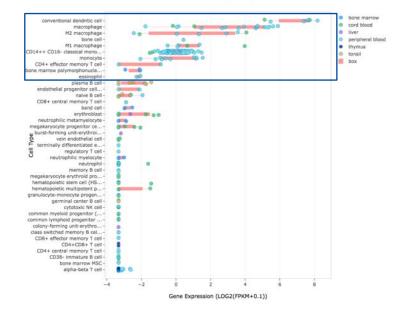
TMPRSS2 is the priming protease, expression in tissues (GTEx-B38)

Gene FPKM for TMPRSS2 by Tissue


Potential receptors for Dengue virus (3) and West Nile virus (2)

Expression in myeloid cells (Blueprint-B38)


CLEC5A (C-type lectin)


CD209 (DC-SIGN)

Gene FPKM for MR1 by Cell Type

Gene FPKM for CD209 by Cell Type

Summary of a QIAGEN IPA core analysis

		2 vs mock (GE) 24h calu		Dia		Der	ulatas Effects	Mahuadra		-
mmary	Graphical Summary	Canonical Pathways	Upstream Analysis	Dise	ases & Functions	Reç	gulator Effects	Networks	Lists	My
								Export :		
Experim	ent Metadata									
Analysi	s Settings									
Top Car	nonical Pathways									
	Name					p-	value		Overlag	o
	Superpathway of Chol	esterol Biosynthesis			-		4.95E-18	7	5.9 %	22/29
	Cholesterol Biosynthe	sis I					2.61E-12	93	2.3 %	12/13
	Cholesterol Biosynthe	sis II (via 24,25-dihydrol	anosterol)		-	•	2.61E-12	93	2.3 %	12/13
	Cholesterol Biosynthe	sis III (via Desmosterol)			·	•	2.61E-12	93	2.3 %	12/13
	Kinetochore Metaphas	e Signaling Pathway					2.70E-12	3	3.7 %	34/101
					1 2 3 4 5 6 7 8	9 >				
	stream Regulators pstream Regulators									
v U	pstream Regulators									
	Name			p-v	alue			Prec	dicted Act	tivation
	IFNG		<u>.</u>		2.58E-73		Act	ivated		
	TP53		20	•	2.83E-63		Act	ivated		
	IFNA2		2	-•	3.10E-58		Act	ivated		
	TNF		2	•	8.18E-56		Act	ivated		
	poly rl:rC-RNA		211.1.1.1.1.1.1.1.1	•	6.31E-55		Act	ivated		
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.9 >						
~ C	ausal Network									
~ C	ausal Network Name			p-v	alue			Prec	dicted Act	tivation
~ C				p-\	alue 1.60E-89		Act	Prec	dicted Act	tivation

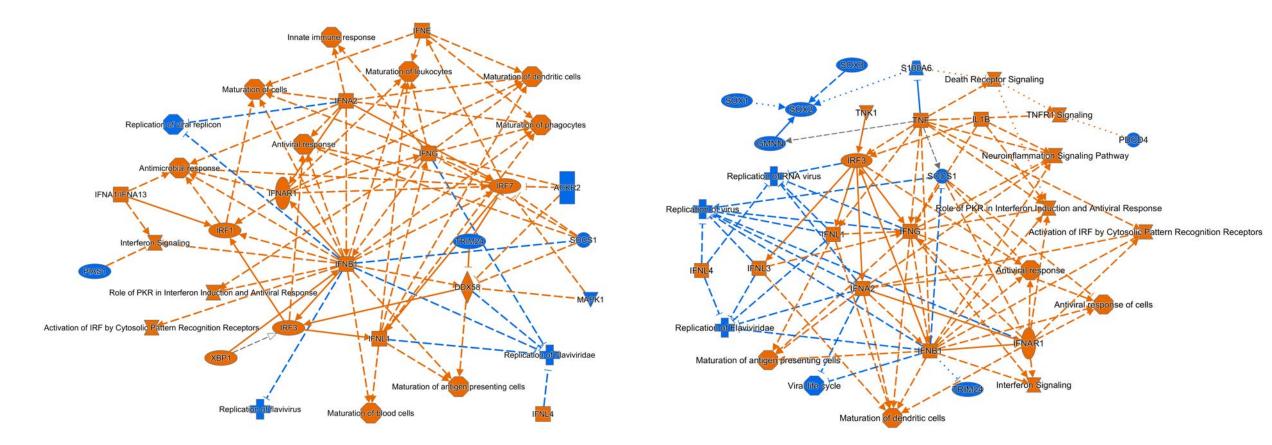
IPA analysis of Calu-3 transcriptome (gene level) 1 day after infection

Cutoffs in IPA:

- Absolute fold change >1.5
- p-value < 0.05
- Min. counts (SARS-CoV-2 or mock) \geq 5

Comparison for this analysis:

SARS-CoV-2 infected Calu-3


Mock-infected Calu-3

Graphical summary of Dengue virus- and West Nile virus-infected A549 cells

DENV vs. mock (GE) 24 hours, A549

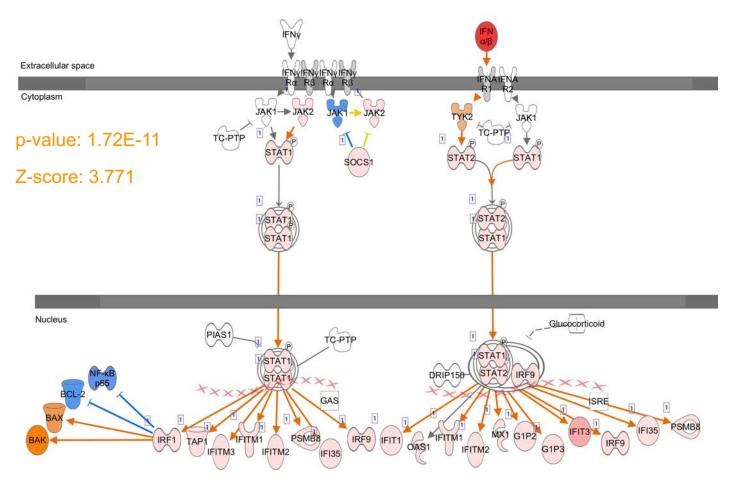
West Nile virus vs. mock (GE) 24 hours, A549

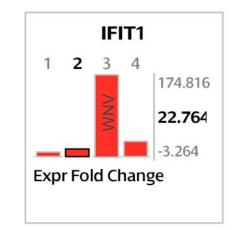
Comparison of Canonical Pathways of the 4 virus-infected cells vs. mock

Metabolic Pathways (24 h post infection (pi), GE)

		1.	1.	
ske	ч. Н	24	SARS-CoV-2 vs moc	
-value: 2 (log10) z-score > 2	E 24	В	E	CADC Cold 11 Construction
o-value: 2 (log10) 🛛 🖥	k G	Š	2	
cal	ğ	Ĕ	S.	-
Z-score > 2	/S IT	/vs	S	-
	DV vs mock GE 24h	WNV vs mock GE 24.	SAR	
Guanosine Nucleotides Degradation III		1		-
Purine Nucleotides Degradation II (Aerobic)			<u> </u>	
Adenosine Nucleotides Degradation II			2	
Urate Biosynthesis/Inosine 5'-phosphate Degradation	-			
UDP-N-acetyl-D-glucosamine Biosynthesis II		Π.		
tRNA Charging				ľ
3-phosphoinositide Biosynthesis		-		
Superpathway of Inositol Phosphate Compounds				
D-myo-inositol-5-phosphate Metabolism				
3-phosphoinositide Degradation				
D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis				
D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis				
Oxidative Phosphorylation				
Superpathway of Cholesterol Biosynthesis				ľ
Ketolysis				ſ
Ketogenesis				
Cholesterol Biosynthesis I				ľ
Cholesterol Biosynthesis II (via 24, 25-dihydrolanosterol)				
Cholesterol Biosynthesis III (via Desmosterol)				
Tryptophan Degradation III (Eukaryotic)				
Zymosterol Biosynthesis				
Isoleucine Degradation I				
Glycolysis I				
Glutaryl-CoA Degradation		•		
Mevalonate Pathway I		•		
Fatty Acid β-oxidation I				
Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via Mevalonate)				

Signaling Pathways (24 h pi, GE)


	\Box
skew	24h 700C E 24 700C
value: 2 (log10)	ck GE : V-2 vs i nock G V-1 vs i
value: 2 (log10) score > 2.5 score	DV vs mock GE 24h SARS-CoV-2 vs moc WNV vs mock GE 24 SARS-CoV-1 vs mocc
Mitotic Roles of Polo-Like Kinase	
Integrin Signaling	
α-Adrenergic Signaling	
Antioxidant Action of Vitamin C	
PD-1, PD-L1 cancer immunotherapy pathway	
PPARa/RXRa Activation	
Systemic Lupus Erythematosus In B Cell Signaling Pathway	
Dendritic Cell Maturation	
Neuroinflammation Signaling Pathway	
Necroptosis Signaling Pathway	
Cardiac Hypertrophy Signaling	
Signaling by Rho Family GTPases	
Insulin Secretion Signaling Pathway	
Hypoxia Signaling in the Cardiovascular System	
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	
NGFSignaling	
PKC0 Signaling in T Lymphocytes	
Crosstalk between Dendritic Cells and Natural Killer Cells	
Interferon Signaling	
Type I Diabetes Mellitus Signaling	
Unfolded protein response	
Retinoic acid Mediated Apoptosis Signaling	
Acute Phase Response Signaling	
Tec Kinase Signaling	
HMGB1 Signaling	
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	
PI3K Signaling in B Lymphocytes	
Role of RIG1-like Receptors in Antiviral Innate Immunity	
iNOS Signaling	
B Cell Receptor Signaling	•
IL-6 Signaling	


Signaling Pathways (continued)

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses			
CD27 Signaling in Lymphocytes	+		
Th1 Pathway	+		
4-1BB Signaling in T Lymphocytes			
MIF Regulation of Innate Immunity			
NF-ĸB Signaling			
TREM1 Signaling			
B Cell Activating Factor Signaling			
RANK Signaling in Osteoclasts			
COS-iCOSL Signaling in T Helper Cells			
Cholecystokinin/Gastrin-mediated Signaling			
Role of NFAT in Regulation of the Immune Response			
PDGFSignaling			
Type II Diabetes Mellitus Signaling			
Lymphotoxin β Receptor Signaling			
ERK5 Signaling			
L-15 Production			
Death Receptor Signaling			
TNFR1 Signaling			
Th17 Activation Pathway			
Toll-like Receptor Signaling			
LK Signaling			
Sirtuin Signaling Pathway			
TNFR2 Signaling			
Cardiac Hypertrophy Signaling (Enhanced)			
NF-kB Activation by Viruses			
IL-8 Signaling			
Senescence Pathway			
Osteoarthritis Pathway			
Hepatic Fibrosis Signaling Pathway			
Regulation Of The Epithelial Mesenchymal Transition By Growth Factors Pat			
Role of PKR in Interferon Induction and Antiviral Response			
PI3K/AKT Signaling			
IL-1 Signaling			
Role of IL-17F in Allergic Inflammatory Airway Diseases			


Interferon signaling is activated in SARS-CoV-2-infected Calu-3 cells at 24 h pi (GE)

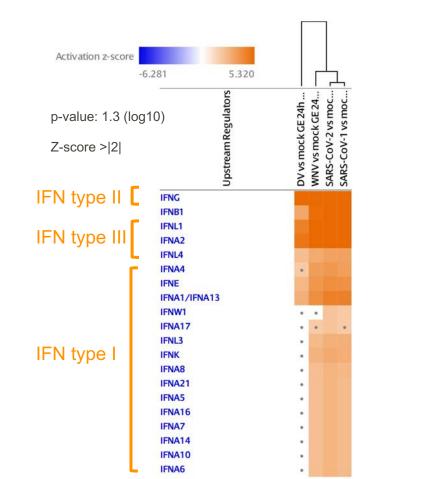
One of the hallmarks of antiviral defense is activated across all four (not shown) in vitro virus-infected cells

Comparing Upstream Regulators of the 4 virus-infected cells vs. mock at 24 h pi (GE)

Similar Transcription Regulator program is induced

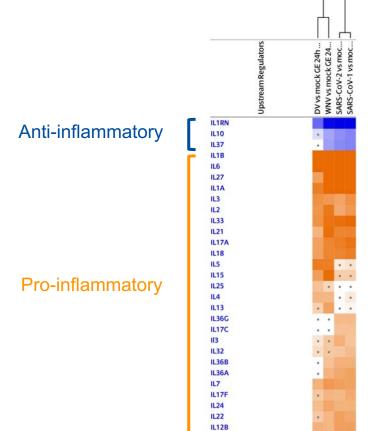
Antiviral response is increased (Regulator Effect)

BCL3

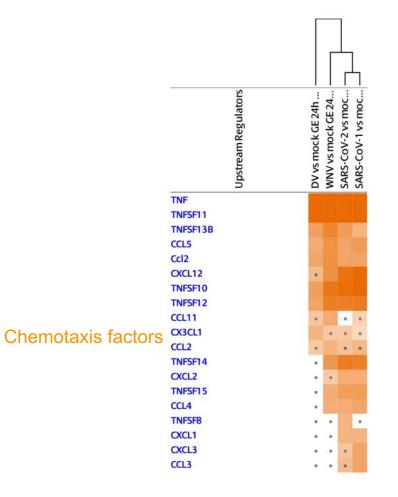

SARS-CoV-2 vs. mock

ODAS (FOSLI) DICERT (STATI) SOCS3 (IFIS) CALLTO

CXCR4 IRF7

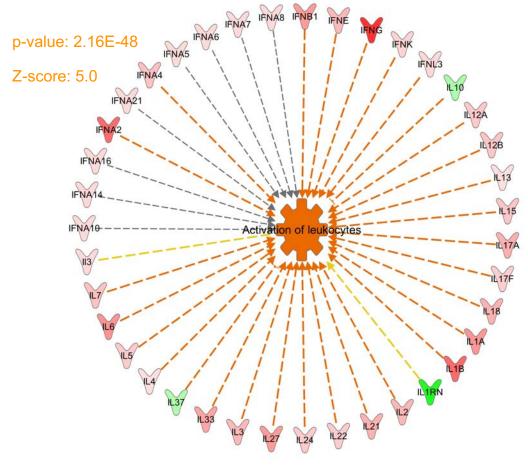

Comparing Upstream Regulators of the 4 virus-infected cells vs. mock at 24 h pi (GE)

Interferons

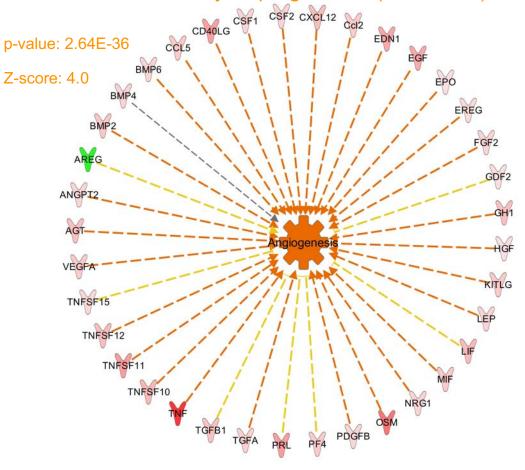


Interleukins

(Chemokines and TNF family)



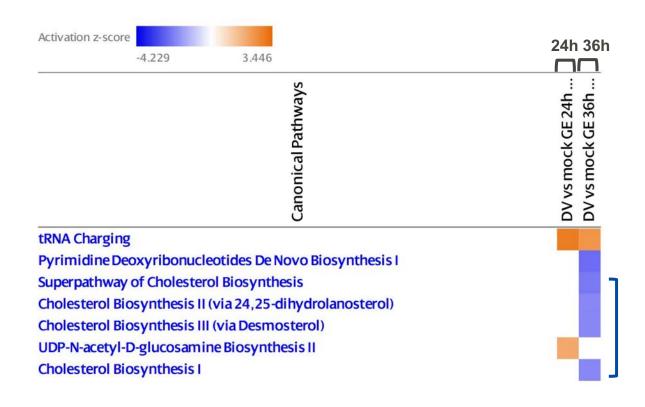
IL12A



Biological processes induced 24 h pi when IFN and IL pro-inflammatory are activated (GE)

Activation of leukocytes is increased, as well inflammatory response (not shown)

Angiogenesis is increased in virus-infected cells 24 h pi, as well chemotaxis, cell cycle progression (not shown)


Transcriptomic analyses of time-dependent in vitro infection of A549 cells by Dengue virus

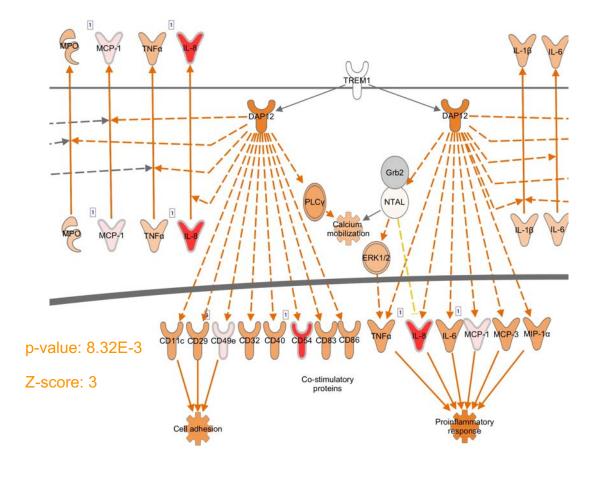
Kinetics of DENV in vitro infection at 36 h pi

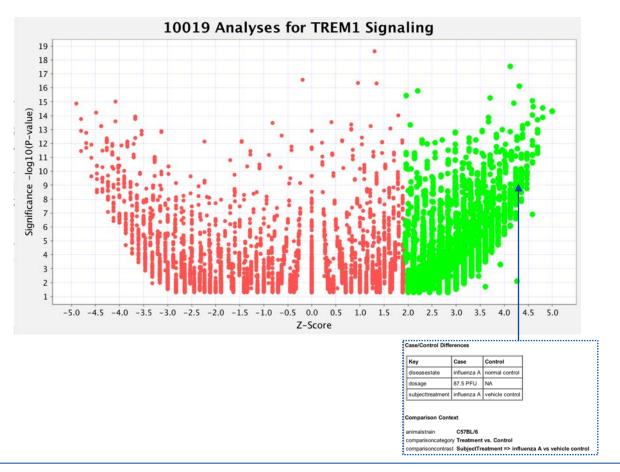
Indicates inhibition of cholesterol biosynthesis and activation of T lymphocytes and myeloid specific pathways

Metabolic pathways

QIAGEN

Signaling pathways


Dendritic Cell Maturation Neuroinflammation Signaling Pathway Interferon Signaling Unfolded protein response Necroptosis Signaling Pathway Production of Nitric Oxide and Reactive Oxygen Species in Macrophages **Tec Kinase Signaling** Insulin Secretion Signaling Pathway PI3K Signaling in B Lymphocytes **IL-6 Signaling HMGB1** Signaling **iNOS Signaling** Acute Phase Response Signaling **B Cell Receptor Signaling** Role of RIG1-like Receptors in Antiviral Innate Immunity **ERK5 Signaling** PI3K/AKT Signaling **Endoplasmic Reticulum Stress Pathway** Hypoxia Signaling in the Cardiovascular System Cell Cycle Control of Chromosomal Replication Cyclins and Cell Cycle Regulation **Kinetochore Metaphase Signaling Pathway** NF-kB Activation by Viruses PKCθ Signaling in T Lymphocytes CD27 Signaling in Lymphocytes **TREM1 Signaling NER Pathway Oncostatin M Signaling**


24h 36h

TREM1 signaling is predicted to be activated in DENV vs. mock at 36 h pi

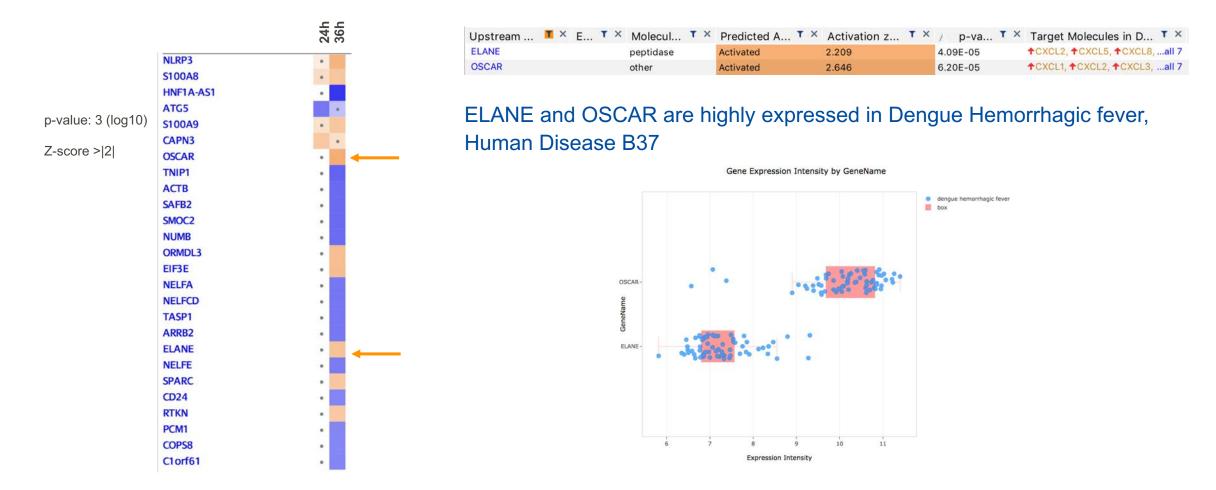
Cell adhesion and proinflammatory response are activated

TREM1 signaling activity plot across 12,000 analyses

Sample to Insight ·

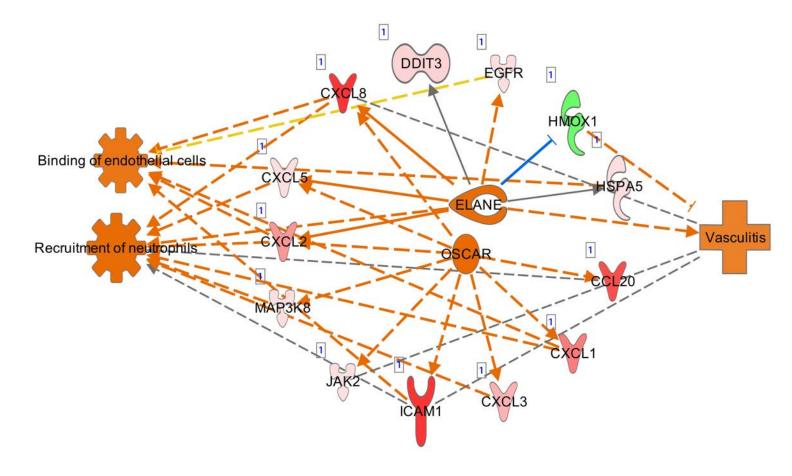
Evaluation of metadata of TREM1 signaling predicted to be activated

TREM1 is activated during viral infection and IL-1 and TNF treatment, and in neutrophil-driven ANCA vasculitis


Customize Table	191 repository analy	ses selected	p-value 1.38E-16 - 3.84E-02 (p1 of 2)					
Metadata field 💦 🎽 🎽	Significant term 📪 🗙	/ p-value T ×	Selected analys T ×	Total analyses	▼ × Selected analys ▼ >	< Total analyses T >		
case.diseasestate	influenza A	1.38E-16	19	433	191	62813		
case.dosage	1 x 10^5 EID50	1.15E-13	5	6	71	38206		
case.genotype	Tg(Thy1-hAPP K670N/M67	3.11E-11	7	21	45	6974		
case.diseasestate	crohn's disease (CD)	5.27E-11	13	339	191	62813		
case.celltype	iPSC-derived astrocyte	9.21E-11	6	40	71	40007		
case.dosage	10 ng/ml IL-1 beta;10 ng/ml	3.82E-10	4	7	71	38206		
case.treatment	IL-1 beta;TNF alpha	5.74E-09	4	8	191	62813		
case.celltype	exhausted B cell	6.43E-09	4	13	71	40007		
case.diseasestate	Alzheimer's disease (AD)	1.56E-08	12	446	191	62813		
case.diseasestate	ANCA-associated vasculitis	1.71E-08	4	10	191	62813		
case.tissue	kidney glomeruli	3.62E-08	8	159	191	62800		
case.celltype	non-classical monocyte	4.32E-08	4	20	71	40007		
case.dosage	10^4 EID50	2.17E-07	4	28	71	38206		
case.tissue	colon descendens	2.45E-07	4	18	191	62800		
case.subjecttreatment	SubjectInfection_influenza A	9.67E-07	11	241	69	9636		
case.diseasestate	rapidly progressive glomer	1.53E-06	3	8	191	62813		
case.cellmarkers	DUMP-CD45+CD19+CD27	1.60E-06	4	13	33	4525		
case.tissue	hippocampus	2.93E-06	11	605	191	62800		
case.tissue	neocortex	3.35E-06	5	74	191	62800		

Selected 0 / 225

Comparison of Upstream Regulators of DENV vs. mock at 24 h or 36 h pi

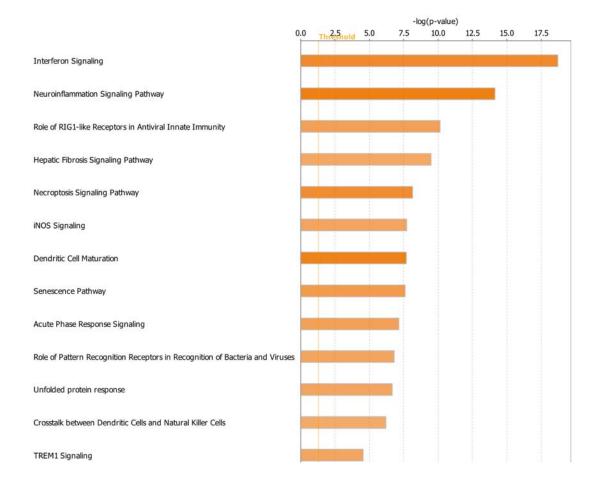

Upstream Regulator: Other and peptidase

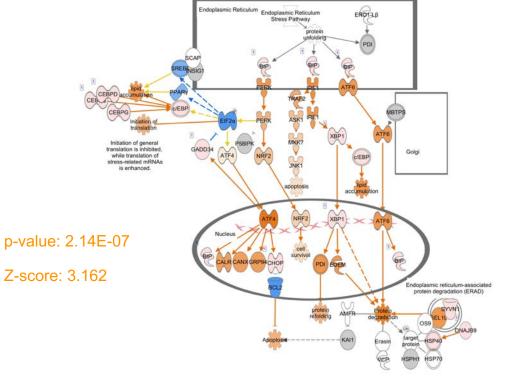
ELANE and OSCAR are predicted to be activated at 36 h pi

ELANE and OSCAR are upstream regulators predicted to be activated in DENV at 36 h pi

ELANE and OSCAR are increasing chemotaxis of neutrophil, binding of endothelial cells and vasculitis

- Neutrophils may have a detrimental role in DENV infection via NET formation, by increasing vascular damages
- ELANE is involved in NET formation and antimicrobial response
- ELANE and OSCAR may contribute to amplify vascular permeability seen in DENV hemorrhagic fever

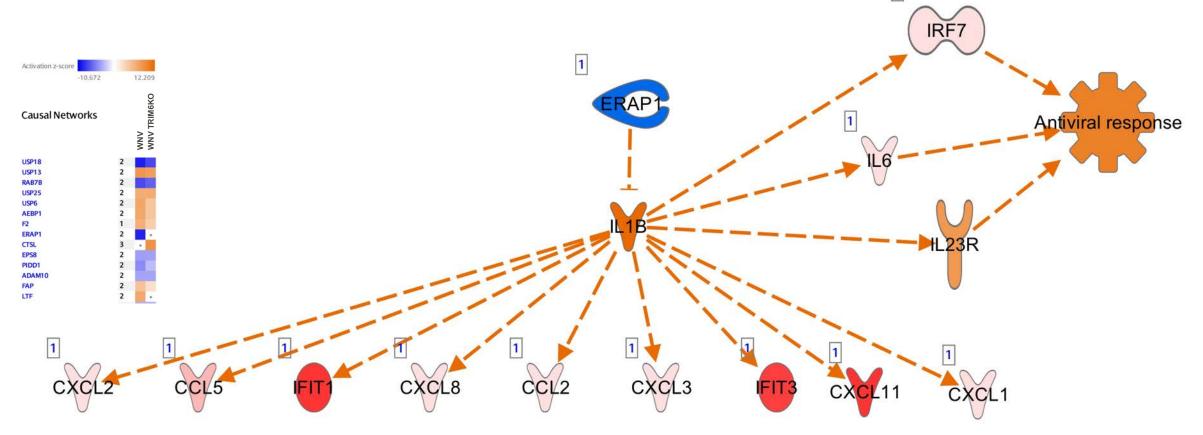

Source: Sung, P. S., Huang, T. F. and Hsieh, S. L. (2019). Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nature communications, **10**, 2402.


Transcriptomic analyses of in vitro infection of A549 cells by West Nile virus

WNV infection activates immune-related pathways and unfolded protein response 24 h pi

Activated signaling pathways

Unfolded proteins response is activated


BiP/HSPA5 is upregulated and may play a major role in the UPR during flavivirus infection by promoting protein folding and virion assembly.

Source: Lewy, T. G., Grabowski, J. M., and Bloom, M. E. (2017). BiP: Master regulator of the unfolded protein response and crucial factor in flavivirus biology. The Yale journal of biology and medicine, 90, 291–300.

Inhibition of ERAP1 promotes the antiviral response in WNV-infected cells at 24 h pi (GE)

Some major mediators of antiviral response against WNV are shown here

ERAP1 is not predicted in WNV TRIM6KO vs. mock

1

Transcriptomic analyses of SARS-CoV-1 and SARS-CoV-2 in vitro infection of Calu-3 cells

Transcriptomic analyses of in vitro flavivirus- or coronavirus-infected cells

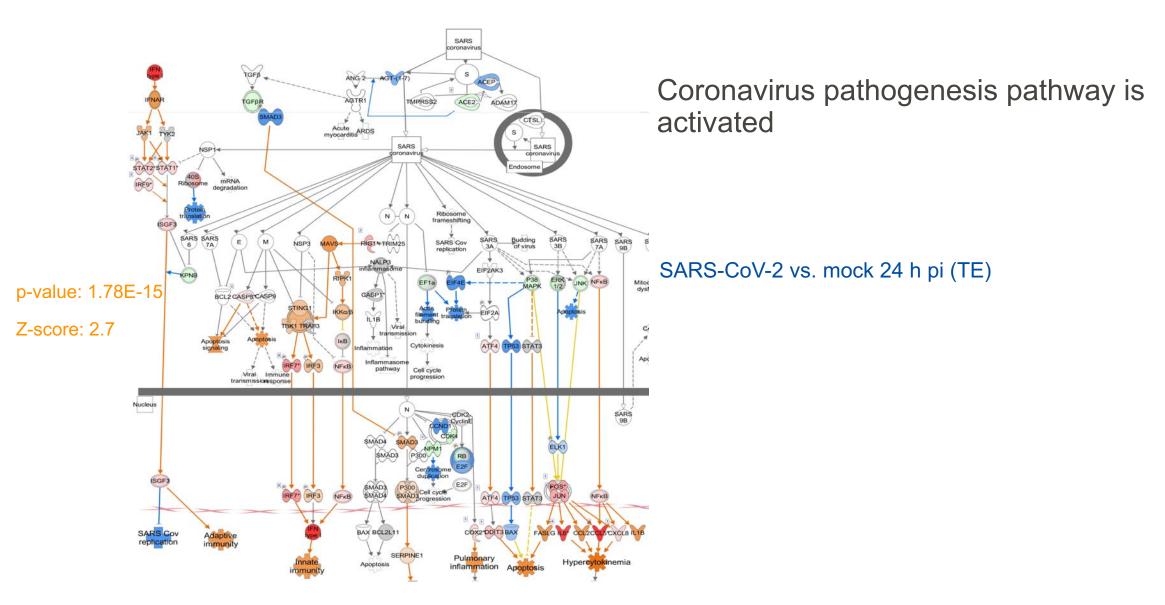
Transcriptomic analyses of SARS-CoV-1 and SARS-CoV-2 at 4,12 and 24 h pi (GE)

Metabolic Pathways

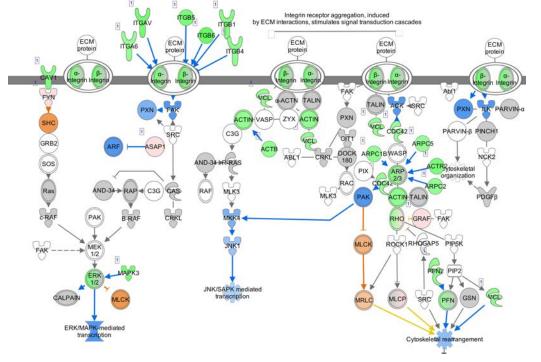
		4	h	12	2h	2	4h
p-value: 1.3 (log10)	thways	s. mo	S. mo	S. mo	's. mo	s moc	's moc
Z-score > 2	Canonical Pathways	SARS-CoV-1 vs. mo	SARS-CoV-2 vs. mo.	SARS-CoV-1 vs. mo	SARS-CoV-2 vs. mo	SARS-CoV-1 vs moc	SARS-CoV-2 vs moc
Oxidative Phosphorylation							
3-phosphoinositide Biosynthes	sis					+	•
Superpathway of Inositol Phos	phate Com pounds						
3-phosphoinositide Degradatio	n						
D-myo-inositol-5-phosphate M	etabolism						
D-myo-inositol (3,4,5,6)-tetrak	isphosphate Biosynthesis						
D-myo-inositol (1,4,5,6)-Tetrak	sisphosphate Biosynthesis		•				
Superpathway of Cholesterol Bi	iosynthesis						
Histamine Degradation							
Glutathione Redox Reactions I							
Ethanol Degradation IV							
Ketolysis							
Valine Degradation I							
Ketogenesis							
Serotonin Degradation							
Cholesterol Biosynthesis II (via	24,25-dihydrolanosterol)						
Cholesterol Biosynthesis I							
Cholesterol Biosynthesis III (via	a Desmosterol)						
TCA Cycle II (Eukaryotic)							
Oleate Biosynthesis II (Animals)						
Tryptophan Degradation III (Eu	karyotic)						
Zymosterol Biosynthesis							
Isoleucine Degradation I							
Mevalonate Pathway I							
Fatty Acid β-oxidation I							
Superpathway of Geranylgeran	yldiphosphate Biosynthesis I (via Mevalonate)						
Glycolysis I							
Glutaryl-CoA Degradation							
Gluconeogenesis I							

Signaling Pathways

grianing radintayo	ŕ	4h	1	2h	2	4
8	1	1	1	1	J	J
p-value: 2 (log10)	-1 vs. mo	-2 vs. mc	-1 vs. mc	-2 vs. mc	-1 vs mo	-2 vs mo
p-value: 2 (log10) Z-score > 2.5 Z-score solution	SARS-CoV-1 vs. mo	SARS-CoV-2 vs. mo	SARS-CoV-1 vs. mo.	SARS-CoV-2 vs. mo	SARS-CoV-1 vs moc.	SARS-CoV-2 vs mod
Systemic Lupus Erythematosus In B Cell Signaling Pathway						
Neuroinflammation Signaling Pathway						
Dendritic Cell Maturation						
Interferon Signaling						
B Cell Receptor Signaling						
PKCθ Signaling in T Lymphocytes						
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses						
IL-6 Signaling						
Crosstalk between Dendritic Cells and Natural Killer Cells						
iNOS Signaling						
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages						
PI3K Signaling in B Lymphocytes						
Role of RIG1-like Receptors in Antiviral Innate Immunity						
NGF Signaling						
Cardiac Hypertrophy Signaling (Enhanced)						
HMGB1 Signaling						
Sirtuin Signaling Pathway		F	F			
Retinoic acid Mediated Apoptosis Signaling						
IL-8 Signaling						
NF-kB Signaling						
Type I Diabetes Mellitus Signaling						
RANK Signaling in Osteoclasts						
Acute Phase Response Signaling						
Tec Kinase Signaling		•				
TREM1 Signaling						
ILK Signaling						
IL-1 Signaling		٠				
Cholecystokinin/Gastrin-mediated Signaling						
ERK5 Signaling		•				
NF-KB Activation by Viruses		٠				
PPARa/RXRa Activation		•				
FAT10 Cancer Signaling Pathway						
TNFR1 Signaling	•	٠				
CD27 Signaling in Lymphocytes						

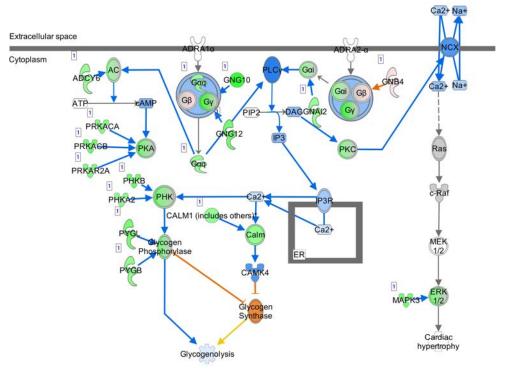

Signaling Pathways (continued)

4h	12ł	ו 24h


CD27 Signaling in Lymphocytes	1	7	F	1	
Role of PKR in Interferon Induction and Antiviral Response					
IL-15 Production					
B Cell Activating Factor Signaling					
Senescence Pathway					
Regulation Of The Epithelial Mesenchymal Transition By Growth Factors Path					
Role of NFAT in Regulation of the Immune Response	÷.,				l
Role of IL-17F in Allergic Inflammatory Airway Diseases					
Hypoxia Signaling in the Cardiovascular System					
Type II Diabetes Mellitus Signaling					
Estrogen Receptor Signaling					
Necroptosis Signaling Pathway					
PDGF Signaling					
Th17 Activation Pathway					
Toll-like Receptor Signaling					
Death Receptor Signaling					
TNFR2 Signaling					
Hepatic Fibrosis Signaling Pathway					
IL-15 Signaling	\sim				
Aryl Hydrocarbon Receptor Signaling					
Gα12/13 Signaling					
HGFSignaling					
Apelin Endothelial Signaling Pathway					
Unfolded protein response					
Renin-Angiotensin Signaling					1
EGFSignaling					
PI3K/AKT Signaling					
AMPK Signaling					
Cell Cycle: G2/M DNA Damage Checkpoint Regulation					i
CD28 Signaling in T Helper Cells					
FLT3 Signaling in Hematopoietic Progenitor Cells					
Lymphotoxin β Receptor Signaling					
PD-1, PD-L1 cancer immunotherapy pathway					ſ
iCOS-iCOSL Signaling in T Helper Cells					
Th1 Pathway					
Xenobiotic Metabolism AHR Signaling Pathway					
Signaling by Rho Family GTPases					
Integrin Signaling					
Mitotic Roles of Polo-Like Kinase					1
α-Adrenergic Signaling					

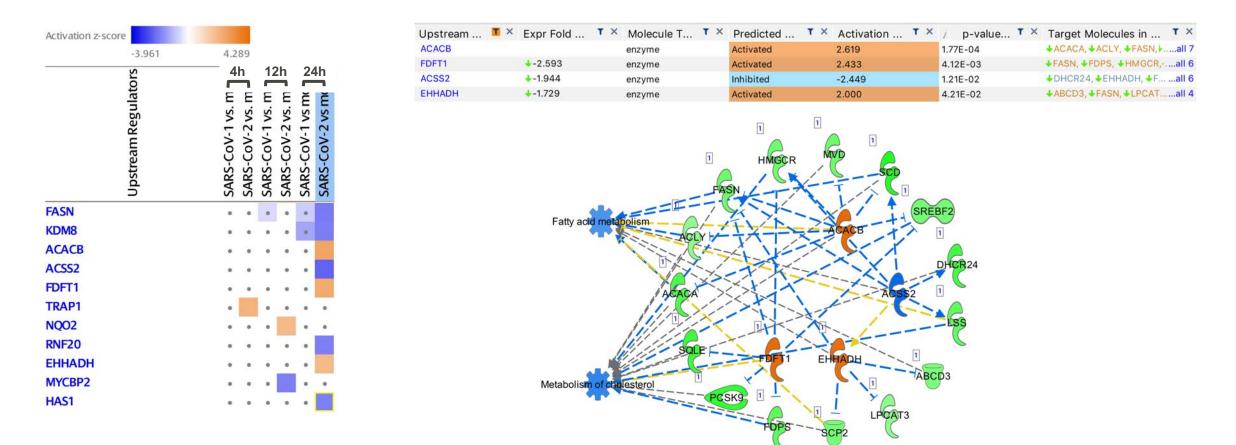
Transcriptomic analyses of SARS-CoV-1 and SARS-CoV-2 at 4,12 and 24 h pi (GE)

Metabolic Pathways	Signaling Pathways	Signaling Pathways (continued)
 Oxidative phosphorylation Glucose metabolism Cholesterol metabolism Fatty acid metabolism Alcohol metabolism Ketones metabolism BCAA degradation Production of ATP, NADH 	 Innate immune responses triggered DC, B, T, NK cells engaged Interferon response increased TH1, TH17 induced Pro-inflammatory signaling UPR activated 	

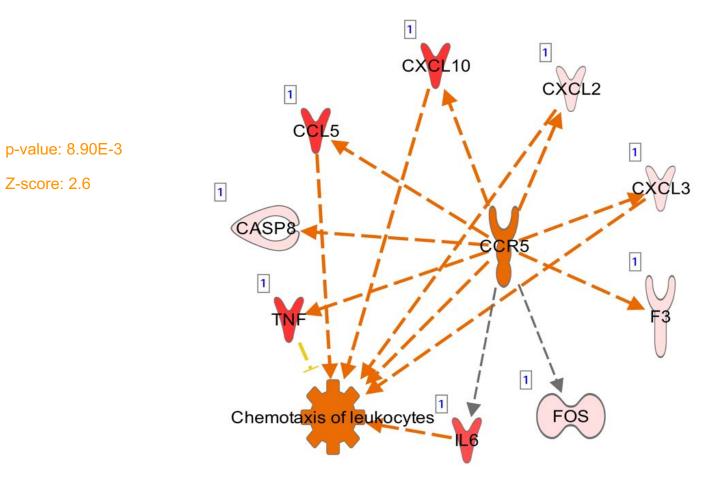

Integrin and α -adrenergic signaling are significantly inhibited in SARS-CoV-2 infection

Integrin signaling is inhibited at 24 h pi (GE)

- SARS-CoV-2 S protein is hypothesized to bind via its RGD/KGD sequence to integrin (e.g., $\alpha 5\beta 1$); this sequence may facilitate the binding
- Integrin and integrin receptors may be down-regulated after binding (as seen for others viruses)


 α -adrenergic signaling is inhibited at 24 h pi (GE)

• COVID-19 induces cardiovascular consequences (myocardial injury, myocarditis, stroke, arrhythmias, heart failure, cardiogenic shock, etc.) and the deregulation of this pathway may play a role


SARS-CoV-2 decreases fatty acid and cholesterol metabolism significantly at 24 h pi

Heatmap of Upstream Regulator Analysis (enzyme, GE)

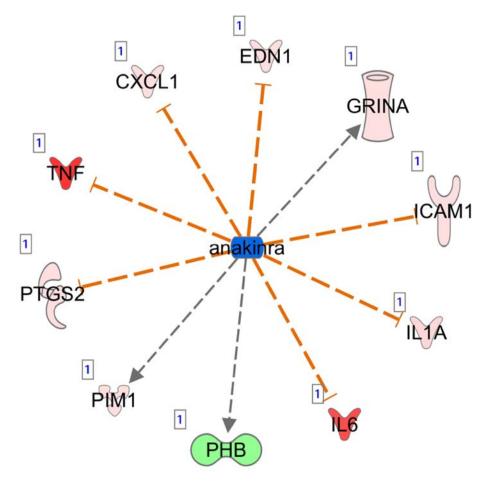
CCR5 is activated allowing chemotaxis of leukocytes

Upstream Regulator Analysis, cytokines, SARS-CoV-2 vs. mock, 24 h pi GE (as soon as 12 h pi)



CCR5 may be a potential therapeutic target against SARS-CoV-2 infection

Chua, R.L. et al. (2020) COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis Nat. Biotechnol. [published online ahead of print].


Coronavirus Network Explorer: Chemotaxis

SARS-CoV-2 induces a strong chemotaxis in COVID-19 patients (24 h pi, GE)

Anakinra could be used to decrease SARS-CoV-2 infection (24 h pi, GE)

Upstream Regulator Analysis predicted that Anakinra (anti-IL1R1) is "inhibited"

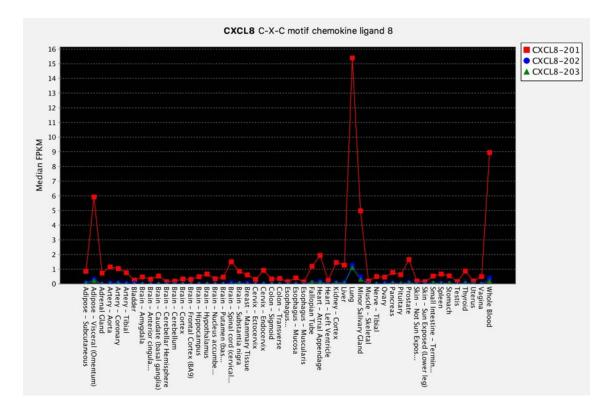
A phase III clinical trial is underway investigating whether blocking IL-1 activity improves the outcome of COVID-19 patients with cytokine release syndrome

Sources:

- Calabrese, L.H. (2020) Cytokine storm and the prospects for immunotherapy with COVID-19. Cleve Clin. J. Med. 87, 389–393.
- Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID), NCT04330638, phase 3, recruiting.

Upregulated transcript variants linked to acute respiratory distress syndrome (ARDS)

IsoProfiler for SARS-CoV-1 vs. mock and SARS-CoV-2 vs. mock (TE) at 24 h pi


/	Molecule Type ×	Gene-level Disease or Function	×	×	Expression Patterns	× Ma ×	×
CXCL8	cytokine	Accumulation of neutrophils, Accumulation of phosphatidylinositol, Acne, Acne vulall 45	51 1	048	1 0	† 3.564	1
					GTEX 4 21	† 4.225	1
H2AC6	other	Rheumatoid arthritis, Severe acute respiratory syndromeall	2	3	1 O 2 O	† 42.718	1
					GTEx 21 2	† 46.057	1
ICAM1	transmembrane receptor	Abluminal crawling of neutrophils, Abnormal function of eye, Abnormal function ofall 3'	17	603	1 ×	† 3.820	1
CAMI	transmemorane receptor				GTEx 211		0
		AA amyloidosis of liver,AA amyloidosis of spleen,Abnormal emotional behavior,all 121	- 2	720	1 Ox-x-xx 2 Ox-x-xx	† 36.154	1
L6	cytokine			/20	2 Ox-x-xx GTEx 922-35	† 122.409	1
1995-1996-1996				201	1 - 🔘	† 6.440	1
TGAM	transmembrane receptor	Abluminal crawling of neutrophils, Abnormal function of neutrophils, Abnormal in all 24	3	291	2 - O	† 5.439	1
					1 O-x	* 8.467	1
MXD1	transcription regulator	Abnormal function of B lymphocytes, Abnormal morphology of myeloid leukocytes,all 4	4	59	2 O-x GTEx 3 1-321	† 8.789	1
					1	† 3.549	1
PTGS2	enzyme	Abdominal aortic aneurysm, Abdominal pain, Abnormal aggregation of blood plaall 104	11 3	815	2	† 4.090	1
					1 O	† 249.265	
TNF	cytokine	Aberration of chromosomes, Abnormal cell cycle, Abnormal function of immuneall 231	3 16	279	2 🔘	† 219.920	1

Biotype: Protein coding Transcript Level: TSL1 GTEx Enrichment: Lung, whole blood

Clear	Select All	
acute resp		
🗸 Acute re	spiratory dist	ess syndrome
🗸 Acute re	spiratory failu	re
🗸 Advance	d stage acute	respiratory distress syndrome
Severe a	cute respirato	rv svndrome

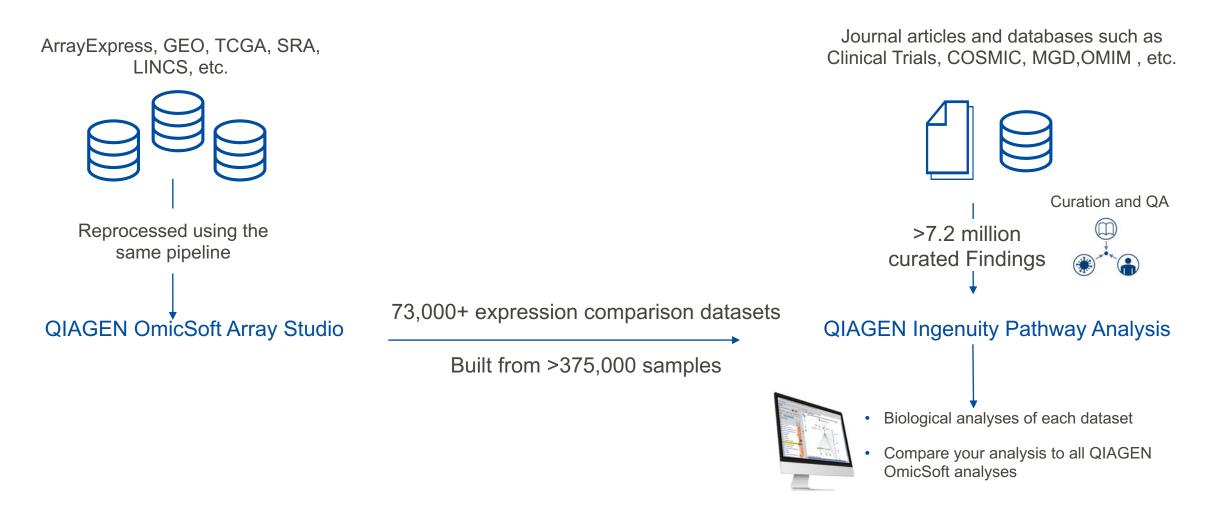
CXCL8-201 as biomarker for prognosis of acute respiratory distress syndrome

Tissue expression enrichment of CXCL8 transcripts

Schematic of CXCL8 transcripts and Findings

Neutrophil populations is significantly increased in COVID-19 patients with ARDS

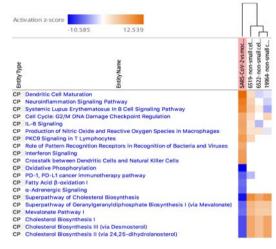
CXCL8 is the major neutrophil chemotactic factor in humans


Source: Wilk, A. J. et al. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature medicine, 26(7), 1070–1076.

1	Isoform Trac	cks		+ Add/Remove column(s)	GTEx	Charts 🗄	SAR	S-CoV-1	vs_ m	ock SRR1	154+	SARS-	CoV-2 vs	_ mocl	SRR1154	1999±
	Transc P	rotein	xs	Schematic ×	All	Tis ×	ID	E ×	X	Ex ×	E ×	ID	Ex ×	×	Ex ×	Ex ×
1	CXCL8-201 C	XCL8 isoform			0.539	4 tissues	EN	4.19E-1	\bigcirc	† 3.564	312.144	ENST	1.44E-12	0	† 4.225	318.279
2	CXCL8-2 C	XCL8 isoform			0.000	2 tissues			-					-		
3	CXCL8-2				0.000	1 tissue			÷.,					-		

 NCT00673517
 The Effect of High Frequency Oscillation on Biological Markers of Ventilator Induced Lung Injury (VILI): Nested Translational Biology Sub-Study of the OSCILLATE Pilot Study ClinicalTrials.gov.

Source: GVK Biosciences


Analysis Match combines knowledge with data

Discovery of a potential inhibitor of SARS-CoV-2 infection using Analysis Match

SARS-CoV-2 vs. mock, 24 h pi, GE, filtering on tissue, CP z-score negative

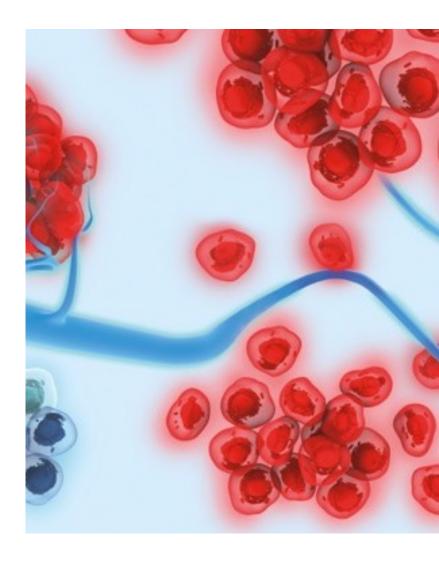
PIKfyve (lipid/protein kinase) plays an important role in endocytic mechanism and has been proposed as a potential therapeutic target against SARS-CoV-2 infection Sources:

- Bouhaddou, M. et al. (2020). The global phosphorylation landscape of SARS-CoV-2 infection. Cell [Advance online publication].
- Ou, X. at al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature communications, **11**, 1620.

Conclusions

Transcriptomic analyses of in vitro flavivirus- or coronavirus-infected cells

Antiviral response is similar across the 4 viruses at 24 h post infection


Potential key upstream regulators and biological processes have been identified in these infections

Differentially expressed isoforms could be used as biomarker for key pathological endpoints

Discovery of potential therapeutic targets or compounds to inhibit these infections by comparing to unrelated thousands of datasets

Resources

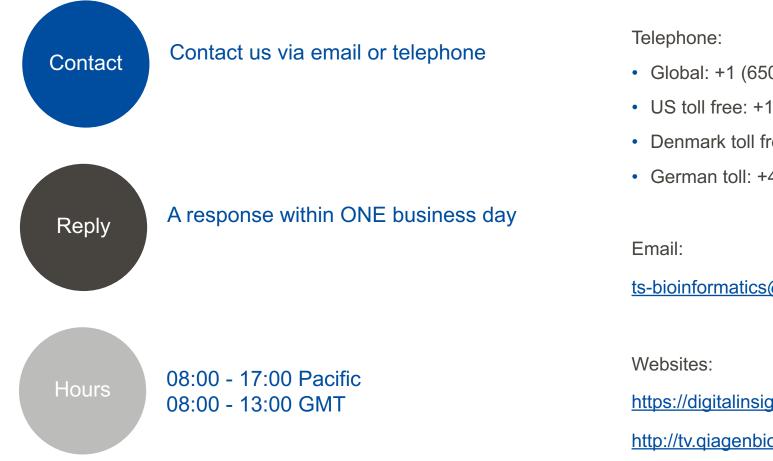
QIAGEN IPA

- IPA product info: https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa
- IPA Analysis Match: <u>https://tv.qiagenbioinformatics.com/video/37242337/exploring-ipas-analysis-match-an</u>
- Land Explorer: <u>https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/content-exploration-and-databases/qiagen-omicsoft-land-explorer/</u>
- Coronavirus Network Explorer: <u>https://digitalinsights.qiagen.com/coronavirus-network-explorer/</u>

QIAGEN OmicSoft:

• Product Info: <u>https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/qiagen-omicsoft/</u>

QIAGEN CLC Genomics


• Product info: https://digitalinsights.giagen.com/products-overview/analysis-and-visualization/giagen-clc-genomics-workbench/

QIAGEN expands integrated coronavirus NGS and software solutions to accelerate COVID-19 research

- QIAseq SARS-CoV-2 Primer Panel converts viral RNA samples into libraries ready for sequencing
- QIAGEN Digital Insights solutions support COVID-19 drug, vaccine and epidemiology research
- For an overview of QIAGEN's coronavirus testing solutions, please visit <u>http://www.qiagen.com/coronavirus</u>.
- To explore QIAGEN's NGS-specific solutions for COVID-19 research, please visit <u>https://go.qiagen.com/CoronavirusNGS</u>
- For details of QIAGEN's SARS-CoV-2 Whole Genome Sequencing Service, please visit <u>https://www.qiagen.com/applications/genomic-services/sars-cov-2-whole-genome-sequencing-services</u>

Customer support and additional resources

- Global: +1 (650) 381-5111
- US toll free: +1 (866) 464-3684
- Denmark toll free: +45 80 82 01 67
- German toll: +49 (0)341 33975301

ts-bioinformatics@giagen.com

https://digitalinsights.giagen.com/

http://tv.giagenbioinformatics.com

Trademarks: QIAGEN[®], Sample to Insight[®], QIAamp[®], QIAseq[®], QIAsymphony[®], EZ1[®], Ingenuity[®], IPA[®], QCI[®], RNeasy[®] (QIAGEN Group); Illumina[®] (Illumina, Inc.); PAXgene[®] (PreAnalytiX GmbH); Thermo Fisher[®] (Thermo Fisher Scientific[®]). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-16699-001 © 2020, QIAGEN, all rights reserved.

Sample to Insight