

Transcriptomics, Proteomics and Metabolic Changes in the Post-Natal Mouse Heart analyzed with QIAGEN IPA and OmicSoft

Discovery Team, QIAGEN Digital Insights

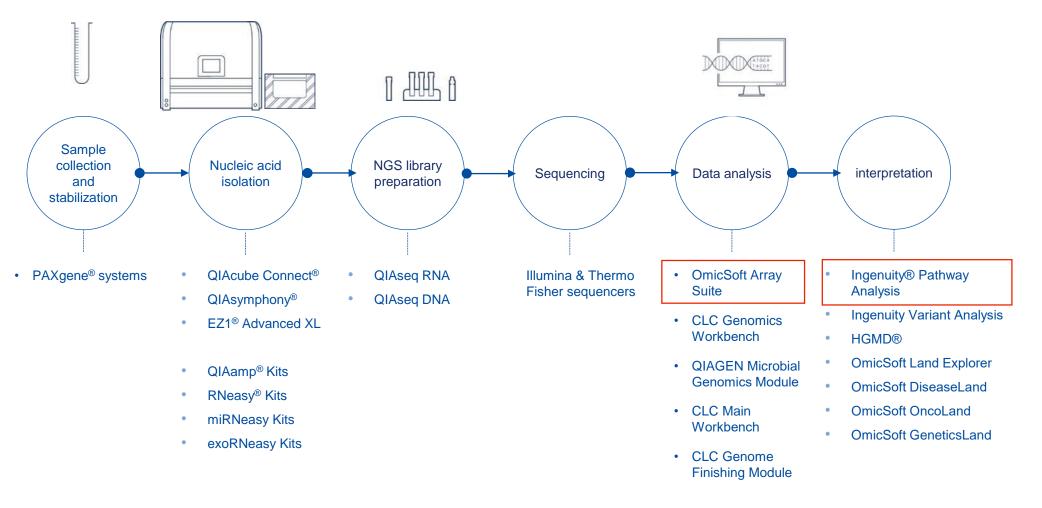
1

Legal disclaimer

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

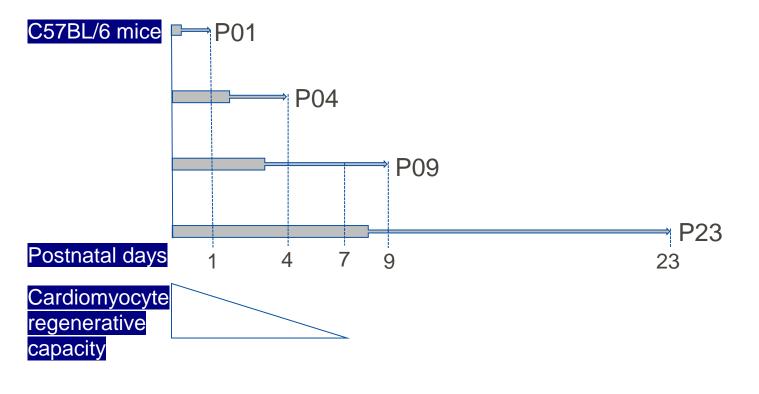
For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.

Agenda


- QIAGEN Sample to Insight
- Highlight important results
- Processing the transcriptome, proteome and metabolome datasets
- Biological analysis of the transcriptome, proteome and metabolome of post-natal mouse cardiomyocytes
- Understand the biological results in larger context
- Conclusions

Objectives: Understand what is happening in post-natal mouse heart

- What transcriptional program underpins the development of heart postnatally?
 - Which transcription regulators are predicted to be activated or inhibited?
 - What are the significant biological processes connected to these transcription regulators?
- What hypotheses could be generated then validated in the lab?
 - Are they master regulators driving some of the post-natal mouse heart?
 - Are they therapeutically targetable or usable in biomarker application?
- Can we identify tissue-specific splicing variants of interest?
 - Are there splicing variants enriched in heart tissues?
 - What are their functions?
 - Can we identify a splicing variant for biomarker application?
- What biological information can we get by comparing our analysis to >52,000 datasets?
 - Is there a common pattern in other biological processes?
 - Can we identify common players?
- Can we establish connection between two genes in heart development?
 - What important genes are connected in heart development?
 - What correlation exist between these genes?



QIAGEN Sample to Insight

RNAseq data analyzed using QIAGEN bioinformatics

Experimental design for the multiomics analysis of postnatal mouse hearts. Two separate sets of mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23 were used.

Platform	Omics
RNA-seq	Transcriptomics
LC-MS/MS	Proteomics
LC-MS GCxGC-MS	Metabolomics

Talman V. et al. (2018) Molecular Atlas of Postnatal Mouse Heart Dev elopment. J Am Heart Assoc. PMID: 30371266, GSE119530

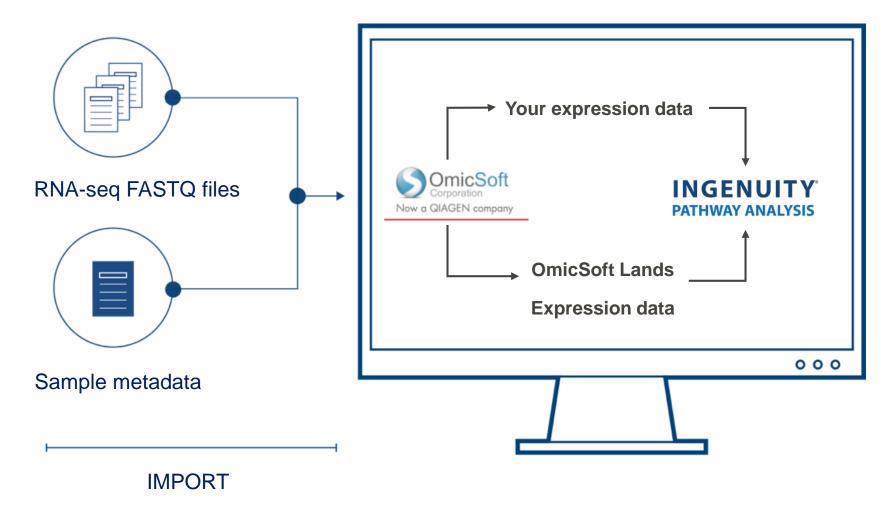
Transcriptomics, Proteomics, Metabolic Changes in Postnatal Mouse Heart

Explore the underlying transcriptional programs (Upstream Analysis)

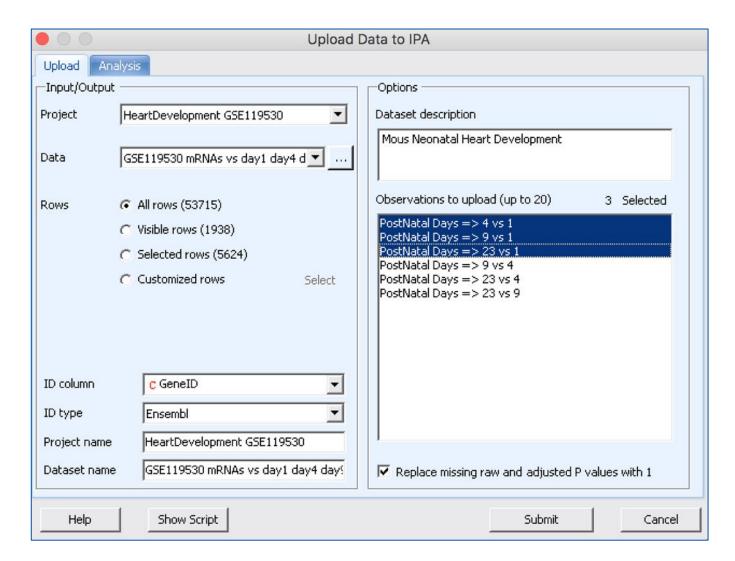
Generate hypotheses to validate in the lab (Causal Network)

Identify tissue-enriched splicing variant and its expression pattern (IsoProfiler)

Compare our analysis to pre-computed datasets (Analysis Match – OmicSoft Lands)



Visualize the connections of important genes in heart development (OmicSoft)


Sample to Insight -

OmicSoft \rightarrow Ingenuity Pathway Analysis (IPA)

Upload dataset to IPA

OS-IPA integration: Analyzed dataset in AS is sent to IPA via Plugin

Auto-submit IPA core analysis from Array Studio dataset

Upload Data to IPA							
Upload Analysis							
Generate Core Analysis	Options						
Options Use only direct relationships in the analysis	Mouse Neonatal Heart Development at Gene Level						
Include chemical nodes in the analysis							
Analysis name G5E119530 mRNAs vs day1 day							
Reference Set Default							
Default							
Fold change focus Both							
Fold change cutoff 2.00 🚔							
P value cutoff 0.050 🚔							
Adjusted P value cutoff 0.050 🚔							
Group Max (intensity) cutoff 10.000 🚍							
Measurement for resolving duplicates Fold Change 💌							
Consolidate IDs using the value							
Help Show Script	Submit Cancel						

The dataset will be automatically analyzed in IPA with the supplied cutoffs

Summary of the Core Analysis: mRNA day 23 vs day 1

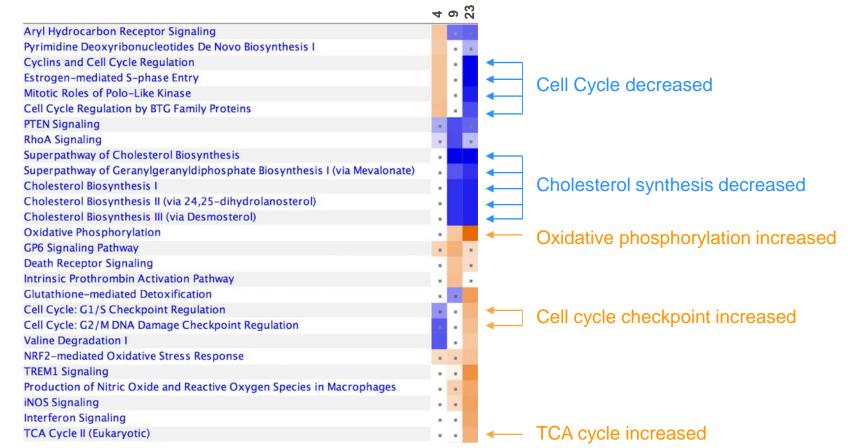
ummary Graphical Summary Canonical Pa		s Diseases & Functions	Dogulator Efforta	Networks Lists	My Dethugue	Molecules	Analysis Ma	tab	
mmary Graphical Summary Canonical Pa	dinways Opstream Analys	s Diseases & Functions	Regulator Effects	Networks Lists	My Pathways				
Experiment Metadata									
Analysis Settings									
Top Canonical Pathways								S	Summary at the gene level
Name				p-	/alue		Overlap		sammary at the gene level
Kinetochore Metaphase Signaling Pat	hway			•	3.79E-21	59.4			
Oxidative Phosphorylation	······,				7.24E-19	55.0			fold change >1.5
Mitochondrial Dysfunction					1.17E-17	45.6			
Hepatic Fibrosis / Hepatic Stellate Ce	Il Activation				4.91E-13	39.8	% 74/186	•	q<0.05
Sirtuin Signaling Pathway					1.39E-11	33.7	% 98/291		•
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				•	min counts >10 in day 23
Top Upstream Regulators									
imes Upstream Regulators									
Name			p-valu	e		Predict	ed Activation		
TP53		_	• 1.	33E-68	Activ	ated			
l-asparaginase		-	• 2.	.05E-57	Activ	ated			
TGFB1		-	• 2.	.17E-56	Activ	ated			
dexamethasone		-	• 2.	.48E-52	Activ	ated			
beta-estradiol		_	• 2 .	.22E-50					
Causal Network						Predict	ed Activation		
✓ Causal Network Name			p-valu	e					
				.47E-93	Inhib				
Name			• 4.		Inhib				
Name TRIM24		 	4.	.47E-93	Inhib Activ	bited			

day 1

Core Analysis: day 4 vs day 1 (example)

Experiment Metadata

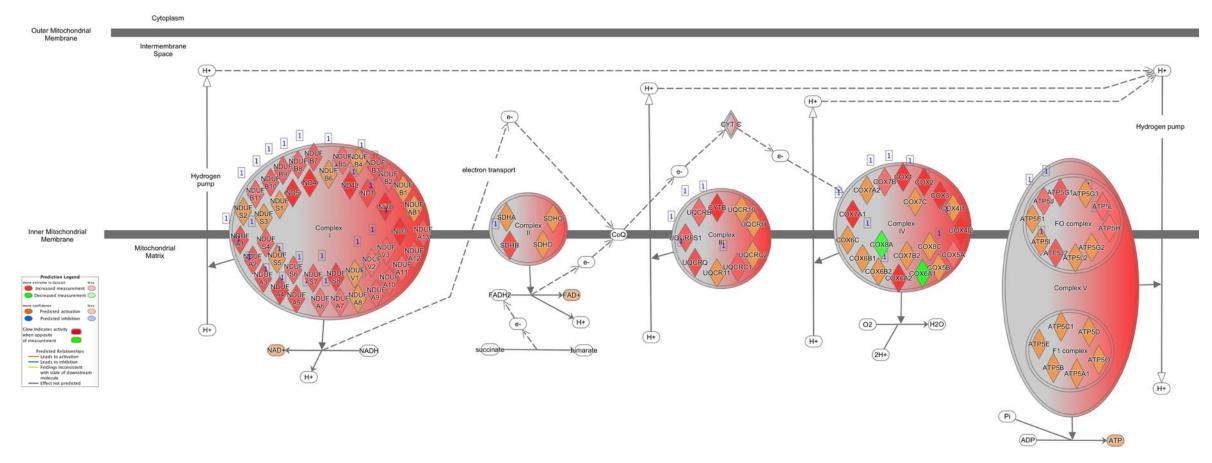
Raw Data (9957) Dataset Summary (9903) Metadata


There are 13 metadata fields with values in this dataset. Fill-in metadata using pre-defined fields, or add a field of your own. Note that only rows with **values** will be saved in the dataset.

Show Rows With Empty Values

🛆 KEY	× VALUE	×
case.agecategory	Mouse pup	
case.animalstrain	C57BL/6JOlahsd	
case.celltype	cardiomyocyte	
case.tissuedescription	heart	
case.treattime[days]	Day4	
comparisoncategory	Other comparisons	
comparisoncontrast	Day4 vs Day1	
control.animalstrain	C57BL/6JOlahsd	
control.treattime	Day1	
genemodelid	Hg38 Ensembl92	
organism	mus musculus	
projectname	GSE119530	
weblink	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119530	

Transcriptomics changes in post-natal mouse heart


Canonical Pathways comparison indicate switch in energy metabolism and changes in cell cycle

Post-natal cardiomyocytes arrest cell cycle progression and increase ox. phos. starting at day 9 after birth

Oxidative phosphorylation is predicted to be activated at day 9 and day 23

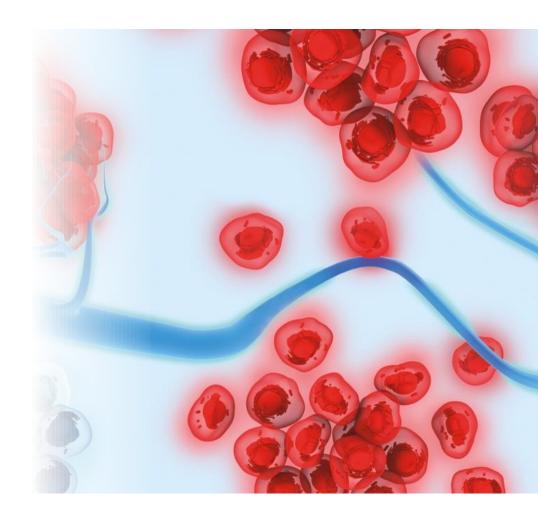
Comparison of transcriptomics analysis indicates that oxidative phosphorylation pathway is activated from day 9 on

Post-natal mouse cardiomyocytes switch to oxidative phosphorylation for efficient ATP production starting at day 9 after birth.

Proteomics analysis shows energy switch in post-natal cardiomyocytes

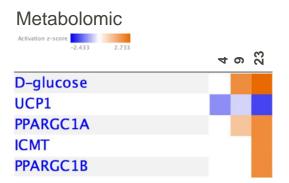
			4 0	33		
Drotoomico indiacto		Oxidative Phosphorylation Activation z-score			┥┥──	Oxidative phosphorylation
Proteomics indicate		Fatty Acid β-oxidation I -4.490 5.710				Fatty acid β -oxidation
major switch in		TCA Cycle II (Eukaryotic)			┥┥──	Production of ATP, CO2, NADH
-		Tryptophan Degradation III (Eukaryotic)				
energy metabolism		Glutaryl-CoA Degradation				
and energy		Ethanol Degradation IV				
0,		Ethanol Degradation II				
substrates after		Glycolysis I				Glycolysis decreased
hirth		Isoleucine Degradation I	•			
birth.		Valine Degradation I				
		Ketogenesis	•			
		Acetyl-CoA Biosynthesis I (Pyruvate Dehydrogenase Complex)				
BCAA degradation		Phenylalanine Degradation IV (Mammalian, via Side Chain)				
DCAA degradation		Oxidative Ethanol Degradation III	•			Katana matahaliam
		Gluconeogenesis I				Ketone metabolism
		Leucine Degradation I				
		2-oxobutanoate Degradation I				
		Methylmalonyl Pathway				
		Ketolysis				
		Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via	•			
		Mevalonate Pathway I				
		Superpathway of Cholesterol Biosynthesis				
l		Branched-chain α-keto acid Dehydrogenase Complex				
		Aspartate Degradation II				

3


Post-natal mouse cardiomyocytes switch from glycolysis to oxidative phosphorylation and increase fatty acid β -oxidation and branched-chain amino-acid degradation.

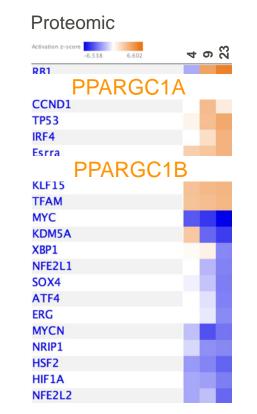
Sample to Insight -

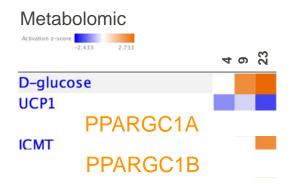
Explore the underlying transcriptional programs


Upstream Analysis

Multi-omics analysis indicate similar transcriptional drivers

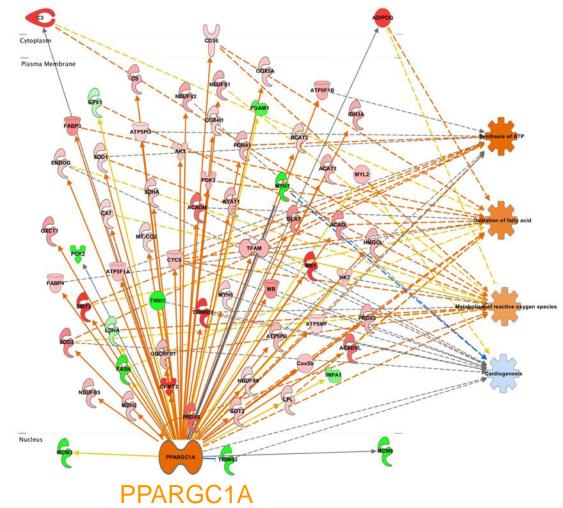
Transcriptomic						
Activation z-score -5.607	7.614	4	6	23		
SMAD7						
MYOCD				-		
KDM5A		-	-			
SIRT1		-	-			
SREBF2						
TRIM24		-	1.0			
ASXL1			-			
TBX2						
MYC						
NKX2-3		-	-			
E2F3						
E2F1			-			
CCND1			-			
FOXM1			-			
MYBL2						
E2F2			-			
MITF			-			
MED1			-			
TAL1			-			
RB1			-			
NUPR1						
TP53						
CDKN2A						
ZFP36			-	-		
KDM5B			-			
E2F6			-			
HNF4A			-			
FOXO3		_	-			
GATA1						
SMARCB1						
RBL1			-			
TCF3		_				
SPI1			_			
IRF7						
IRF3						
STAT1 SMARCA4						
XBP1						
NFE2L2						
EP300		-				
PPARGC1A			-			
YBX1						
STAT4		÷.				
CEBPA						
IRF1						
RELA		1.2				
ETS2		0				
SIM1		1				
ARNT2		0				
		_	-			


23



Upstream Regulators Analysis of transcriptomics, proteomics and metabolomics show induction of fatty oxidation regulation by PPARG coactivators.

Multi-omics analysis indicate similar transcriptional drivers


Transcriptomic						
Activation z-score -5.607 7.614	4	6	33			
SMAD7						
MYOCD			-			
KDM5A						
SIRT1						
SREBF2						
TRIM24						
ASXL1	-	-				
TBX2						
MYC						
NKX2-3						
E2F3						
E2F1		-				
CCND1		-				
FOXM1						
MYBL2						
E2F2						
MITE		-				
MED1						
TAL1						
RB1		-				
NUPR1						
TP53						
CDKN2A						
ZFP36						
KDM5B		-				
E2F6						
HNF4A						
FOXO3						
GATA1						
SMARCB1						
RBL1						
TCF3						
SPI1						
IRF7						
IRF3	-					
STAT1	-					
SMARCA4	1.0					
XBP1	-		-			
NFE2L2		-				
PPARGC1	Α					
STAT4	1					
CEBPA						
IRF1						
RELA	-					
ETS2						
SIM1	-					
ARNT2	-					
AND 12		-				

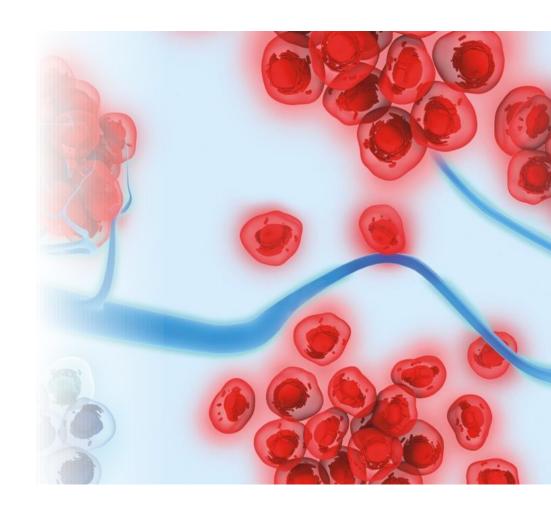
Upstream Regulators Analysis of transcriptomics, proteomics and metabolomics show induction of fatty oxidation regulation by PPARG coactivators.

PPARGC1A is predicted to induce ATP synthesis

At day 23 post-birth, PPARGC1A predicted to be activated and drives ATP synthesis and metabolism of ROS through increase of fatty acid oxidation (transcriptomics).

Synthesis of ATP (p-value 8.01E-15)

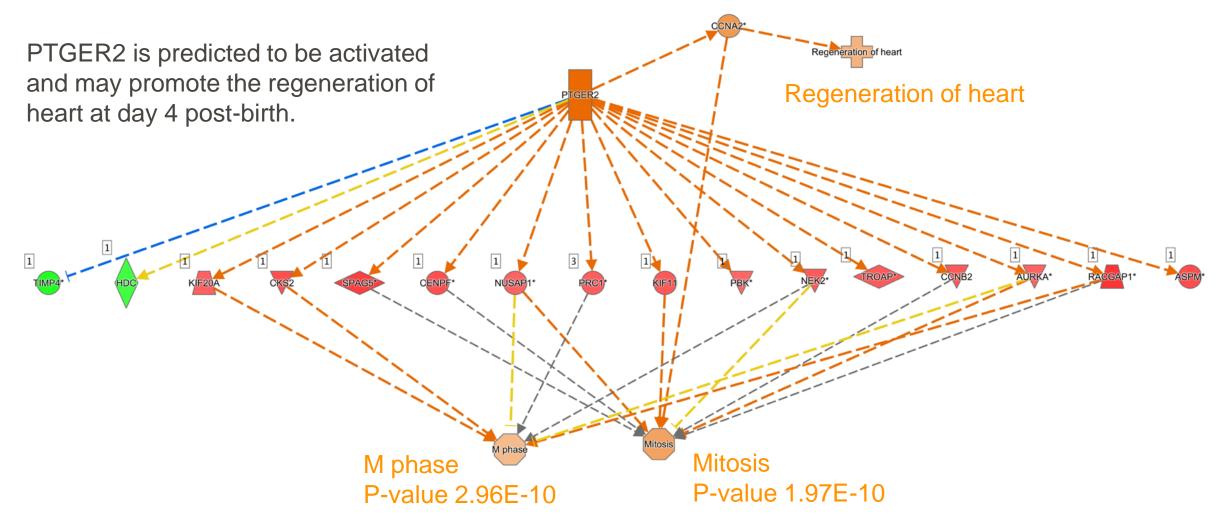
Oxidation of Fatty acid (p-value 4.61E-16)


Metabolism of ROS (p-value 7.65E-12)

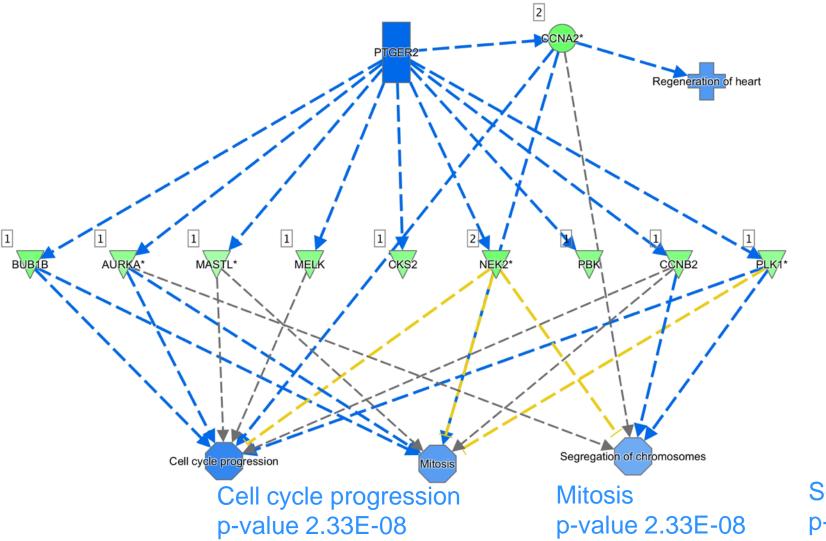
Cardiogenesis (P-value 4.03E-10)

Generate hypotheses to validate in the lab

Causal Network



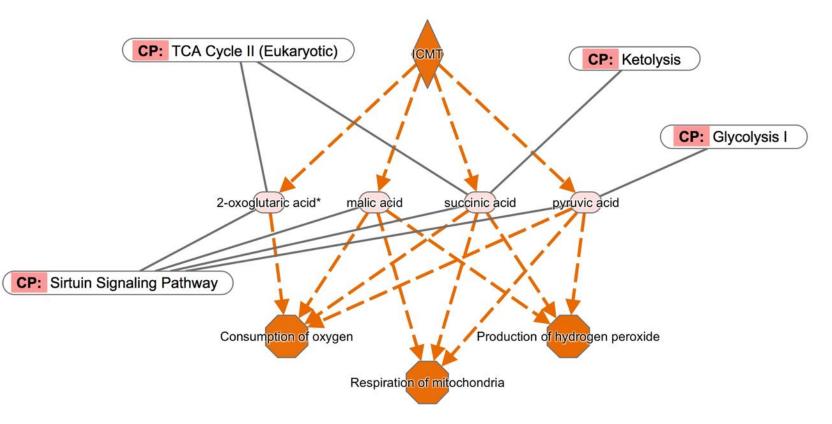
Causal Network Analysis of transcriptomics in post-natal mouse heart


Activation z-score		4	6	23	
CDK3	2				
PTGER2	1				•
MAP3K21	2				
ERBB2	1				
PTGER1	2		_		•
KSR1	2				
COL4A3BP	2				
IKBKG	1				
ADORA2A	2				
NR1D1	3				
PRKAA2	2				
PRKCG	2				
CDK3	3				
CSNK1G2	2				
SHC3	2				
DGKZ	2				
NR4A3	3				
ΜΑΡΚΑΡΚ2	2				

Comparison of Causal Network at day 4 and day 23, switch in usage of PTGER2 and PTGER1.

Regeneration of heart is predicted to be increased at day 4 post-birth

Regeneration of heart is predicted to be decreased at day 23 post-birth

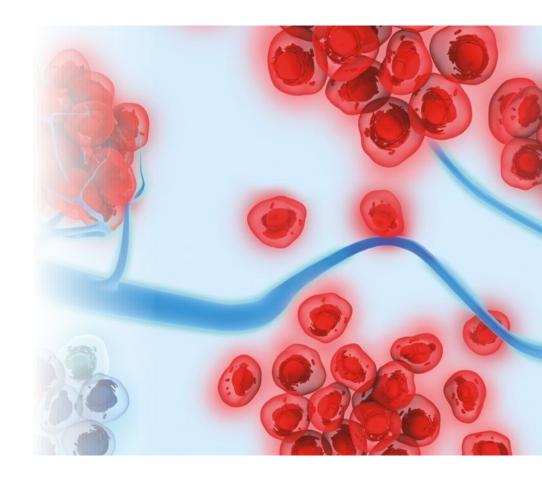


Regeneration of heart

PTGER2 is predicted to be inhibited and may inhibit the regeneration of heart at day 23 post-birth.

Segregation of chromosomes p-value 2.33E-08

Regulator Effects predicts ICMT as a player in post-natal mouse heart



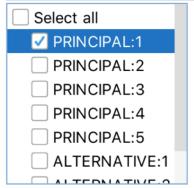
Comparison of metabolomics analysis predicts that ICMT (Isoprenylcysteine carboxyl methyltransferase) increases O2 consumption and oxidative phosphorylation at day 23 in post-natal mouse heart.

Identify tissue-enriched splicing variant and its expression pattern

IsoProfiler

Isoforms differentially expressed observed in post-natal mouse heart

Add To	My Pathway	Add To My List IsoProfiler	Findings	Create Dataset C	Customize Table	»
∧ Sy	Molecul 🗵	Gene-level Disease or Fu	nc 🗵	Gene-level Fi 🗵	Expressi 🗵	Max Ex 🗵
ABCC9	ion channel	Abnormal ST segment, Antivir	all 67	320	2 O 3 more	† 1.340
					3 🔵	† 1.711
					1	
ABCD1	transporter	Abnormal conduction by nerves	s,all 74	383	2	
					3 🔘 -	† 1.471
					1	
ABCD2	transporter	Abnormal conduction by nerve	sall 55	103	2 🔾	† 1.448
					3 🔘	† 2.602
					1	
ABCD3	transporter	Abnormal composition of bile,.	all 24	51	2	
					3	↓ -1.990
					1	† 1.457
ABCE1	transporter	Antiviral response, Apoptosis o	all 10	30	2	
					3 🔘 - 🔾 -	† 1.691


At q<0.05, 2256, 2965 and 6639 differentially expressed isoforms are found at day 4, day 9 and day 23 post-birth, respectively.

IsoProfiler to filter transcripts from post-natal mouse cardiomyocytes

\sim I	Datasets			
² Index	Name	o dov1	Fold Chan p-value p-value	Intensity/ False Dis
1	transcripts day4 v transcripts day9 v	-		*
2	transcripts day9 v	-		v v 11
	V	Add more	Remove sele	ected
	ilters			+
~ <u>E</u> >	-1.5	•••	1.5	X
\sim Ex	opr False Discovery R	ate (q-value)		×
	0	.05		
∨Bi	otype			×
	 Select all protein-coding antisense IG C pseudogene IG D pseudogene 			

IG J pseudogene
IG pseudogene

\sim Gene-level Disease or Function

Clear Select All

cardiomyocytes

- Oxidative stress response of cardiomyocytes
- Polyploidization of cardiomyocytes
- Polyploidy of cardiomyocytes
- ✓ Proliferation of cardiomyocytes
- Quantity of apoptotic cardiomyocytes
- Quantity of cardiomyocytes
- Recruitment of cardiomyocytes

Isoforms involved in proliferation of cardiomyocytes

Principal isoforms of 4 genes of 21 after filtering are inversely regulated at day 4 and day 23 post-birth.

			1	0		D4	† 1.636
ALDH1A2	enzyme	Abnormal morphology of atall 93	2	×		D9	
			3	\bigcirc		D23	↓ -2.084
			1	×		D4	† 1.873
BIRC5	other	Accumulation of breast caall 297	2	◯×		D9	↓ -1.702
			3	◯×		D23	↓ -12.801
			1	\bigcirc × × \div		D4	† 1.975
CCNA2	other	Activation of R Acute myall 74	2			D9	
			3	\bigcirc ×× \bigcirc	¥	D23	↓ -9.772
			1	<u> </u>		D4	† 1.698
E2F2	transcription reg	Abnormal function of immuall 96	2			D9	
			3	<u> </u>		D23	↓ -1.972

Four isoforms are differentially expressed between day 4 and day 23

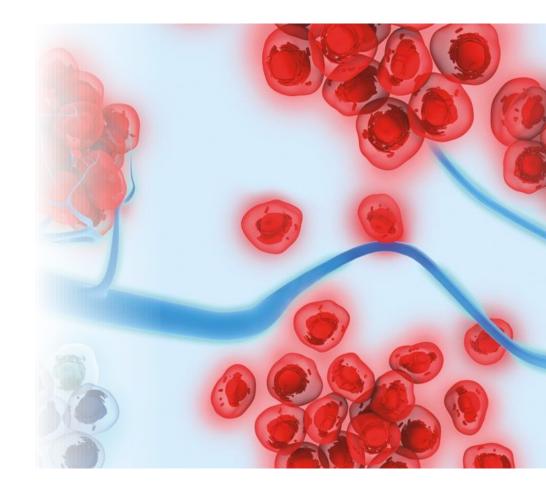
\wedge	Tran	script	Proteir	ר 🗵	Schematic	×	APPRIS	🗴 Bio	type 🗵	transcri	pts day4 v	/s day1	1	+	.+	transc	ripts d	ay23 vs d	lay1 🛨
										ID		Х Е.	🗙 E	Exp 🗵	ID	ID	🗙	Ex 🗵	Exp 🗵
1	Aldh1	a2-201 /	Aldh1a2	-201		P	RINCIPAL	1 prot	ein-coding	ENSMUST	ТООО	× †	1.636	8.54E-04	E	ENS	\bigcirc	↓ -2.084	2.46E-06
A	LDH1A2	(retinoic	acid p	roducinę	g enzyme) is	s necessar	ry during	the ep	icardial d	evelopme	nt.								
\wedge	Trans	Protein	×	Sc 🗵	APPRIS 🗵	Biotype	🗵 trans	cripts d	ay4 vs da	y1 🕂	transcrip	ts day9) vs day	1 .	tra	anscrip	ts day2	23 vs day1	+
\land	Trans	Protein	X	Sc 🗵	APPRIS 🗵	Biotype	× trans			-						•			+ Exp 🗴
⊥ 1					APPRIS X		ID	(× E ×	-	ID	🗴	Ex 🗵	Exp	× ID		🗙	Ex 🗵	

BIRC5 controls cardiomyocytes number in heart development, its overexpression promotes cell cycle progression. Its downregulation contributes to cell cycle arrest during postnatal cardiac development in a mouse model.

\triangle	Transcript	Protein 🗵	Schematic	🗵 APPRIS 🗵	Biotype 🛛 🗙	transcr	ipts da	y4 vs da	y1 🛨	tran	transcri	ots day	23 vs day	/1	+
						ID	🗙	E 🗵	Exp 🗵	ID (× ID	🗙	Ex 🗵	Exp 🗵	Е 🗵
1	Ccna2-201	Ccna2-201		PRINCIPAL:1	protein-coding	ENSM	\bigcirc	† 1.975	5.14E-03	-	ENSMU	\bigcirc	↓ -9.772	2.97E-17	385.647
2	Ccna2-205	Ccna2-205			protein-coding	ENSM	×	† 1.513	7.45E-02	-	ENSMU	×	+-3.029	2.88E-02	5.311
3	Ccna2-203	Ccna2-203	•••••		protein-coding	ENSM	×	† 1.564	1.55E-01	-	ENSMU	×	↓ -5.622	1.62E-06	175.989
4	Ccna2-202				retained intron		-			-		-			
5	Ccna2-204				processed transcr	ENSM	×	† 1.424	1.00E00	-		-			

CCNA2 is silenced after birth in the mammalian heart and its constitutive expression enhances cardiomyocyte proliferation resulting in cardiac hyperplasia.

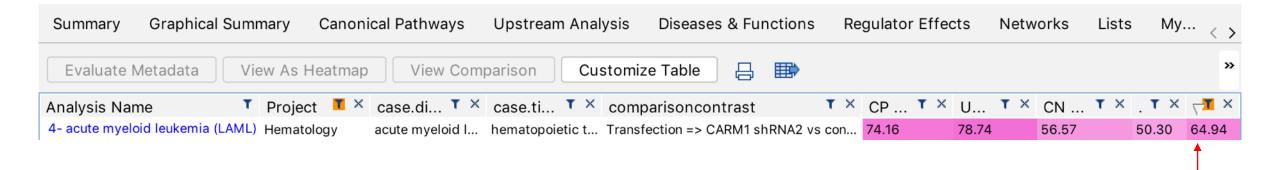
Δ.	Trans	Protein 🛛 🗙	Schematic 🛛 🗵	APPRIS 🗴	Biotype 🛛 🗙	transcrip	transcripts day4 vs day1			tran	- transcrip	transcripts day23 vs day1			
						ID	🗙	E 🗵	Exp 🗵	ID (ID D	🗵 Ех	к 🗵 Е	x 🗵	E 🗵
1	E2f2-201	E2f2 isoform 1		PRINCIPAL:1	protein-coding	ENSMU	\bigcirc	† 1.698	4.92E-03	-	ENSMU	•	-1.972 4	1.16E-03	42.649
2	E2f2-202				processed transcri		-					-			


E2F2 has been shown to promote adult cardiomyocyte proliferation.

Sample to Insight -

Compare your analysis to precomputed datasets

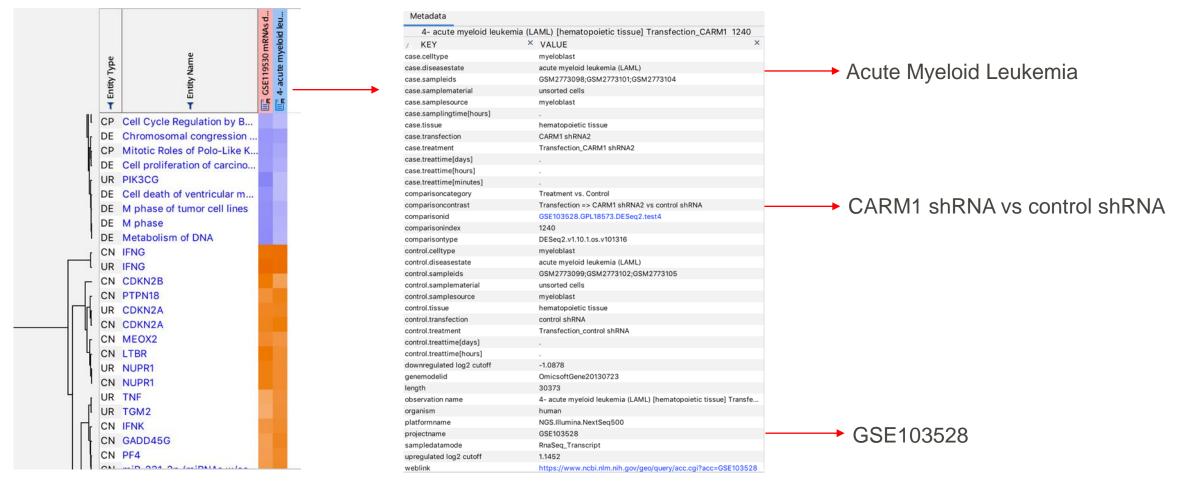
Analysis Match – OmicSoft Lands


Analysis Match: Postnatal mouse heart day 23 vs. precomputed datasets

Evaluate Metadata Vi	ew As He	atmap	View	Comparis	son	Customize Ta	able									
Analysis Name T T ×	T ×	T ×	T ×	T ×	T ×	T × 1	r ×	т×	T ×	T ×	$\nabla \mathbf{T} \mathbf{X}$	τ×	. T ×	. T ×	. T ×	, т ×
4- acute myeloid leuker Hemato	acute	hemato	Transfe	Treatm	Transfe	https://w 74.16	5 78	8.74	56.57	50.30	64.94	8.96	2.73E	9.15E	7.62E	65.60
111- normal control [fore Human	normal	forebrain	NA	Other	Experi	http://wv70.71	1 70	0.00	51.96	55.97	62.16	2.47	6.83E	1.64E	1.18E	66.16
81- normal control [fore Human	normal	forebrain	NA	Other	Experi	http://wv63.2	5 72	2.11	56.57	54.88	61.70	6.11E	4.83E	9.15E	5.22E	68.77
3- normal control [bone Mouse	normal	bone m	Infectio	Treatm	Genoty	https://w 77.46	6 74	4.83	45.83	47.85	61.49	6.96	1.31E	2.5E	1.28E	54.83
102- normal control [for Human	normal	forebrain	NA	Other	Experi	http://wv 77.46	6 6	8.56	50.00	49.09	61.28	1.07E	6.39E	5.3E	9.42E	61.14
109- normal control [for Human	normal	forebrain	NA	Other	Experi	http://wv 67.08	8 72	2.11	51.96	53.77	61.23	2.68	4.83E	1.64E	3.83E	62.89
3- lung carcinoma [lung Mouse	lung ca	lung	NA	Other	Subject	https://w 63.2	5 76	6.16	57.45	43.91	60.19	1.28	4.66E	1.08E	7.3E	61.00
244- normal control [he Human	normal	heart	NA	Other	Experi	http://wv 59.16	6 77	7.46	44.72	55.97	59.33	2.39	1.29E	9.77E	4.47E	57.99
533- normal control [kit Human	normal	kidney	NA	Other	Experi	http://wv63.2	5 72	2.11	48.99	51.48	58.96	1.28	4.83E	2.73E	2.29E	57.05
1- Alzheimer's disease Mouse	Alzhei	bone m	M-CSF	Other	Genoty	https://w 77.46	6 70	0.71	47.96	39.58	58.93	6.96	6.46E	1.32E	2.26E	52.84
3- ankylosing spondylit Human	ankylos	periph	IFN ga	Treatm	Diseas	http://wv 70.71	1 76	6.81	46.90	41.07	58.87	3.98	2.53E	5.94E	1.37E	50.74
4- normal control [bone Mouse	normal	bone m	Infectio	Treatm	Genoty	https://w 67.08	8 71	1.41	47.96	47.85	58.57	4.53	5.76E	1.32E	1.51E	54.52
1- skin melanoma (SKCI OncoGEO	skin me	skin	NA	Treatm	Sampli	https://w 63.2	5 75	5.50	50.00	45.26	58.50	6.11E	8.05E	5.3E	3.7E	54.96
4- normal control [fetal Human	normal	fetal br	differen	Treatm	PreTrea	https://w 67.0	8 74	4.83	44.72	46.57	58.30	2.44	1.31E	9.77E	6.3E	51.41
345- normal control [sp Mouse	normal	spleen	NA	CellTy	CellSub	https://w 63.2	5 70	6.81	42.43	50.30	58.20	1.06	2.53E	1.2E-19	8.09E	53.50
118- normal control [lun RatDise	normal	lung	NA	Other	Tissue:	https://w 54.7	7 7	7.46	56.57	43.91	58.18	1.08	1.29E	9.15E	3.01E	58.26
526- normal control [kit Human	normal	kidney	NA	Other	Experi	http://wv 70.71	1 6	8.56	41.23	51.48	58.00	3.98	6.39E	3.73E	5.55E	54.04
234- normal control [he Human	normal	heart	NA	Other	Experi	http://wv 59.16	6 78	8.10	43.59	50.30	57.79	1.23	6.14E	3.55E	5.36E	52.32
534- normal control [kit Human	normal	kidney	NA	Other	Experi	http://wv 63.2	5 70	0.00	50.99	45.51	57.44	1.06	6.83E	9.62E	1.82E	58.87
24- bladder transitional OncoGEO	bladder	bladder	BGJ398	Treatm	TreatTi	https://w 59.16	6 79	9.37	46.90	43.91	57.34	5.81	1.14E	5.94E	1.53E	51.14
222- normal control [he Human	normal	heart	NA	Other	Experi	http://wv 70.71	1 70	0.00	48.99	39.58	57.32		and an and		1.04E	
220- normal control [he Human			NA	Other	Experi	http://wv 63.2	5 74	4.16	48.99	42.51	57.23	6.11E	1.99E	2.73E	5.97E	52.50
1- normal control [bone Mouse			Infectio	Treatm	Genoty	https://w 67.08	8 6	7.08	47.96	46.57	57.17	8.06	4.73E	1.32E	1.14E	53.96
2- normal control [skin] Human				Treatm		http://wv 56.5			41.23	57.04	57.08				8.26E	
106- normal control [he RatDise			NA			https://w 59.16			59.16	31.05	57.03			N.C	5.4E	and the second second

Looking for a similar pattern in

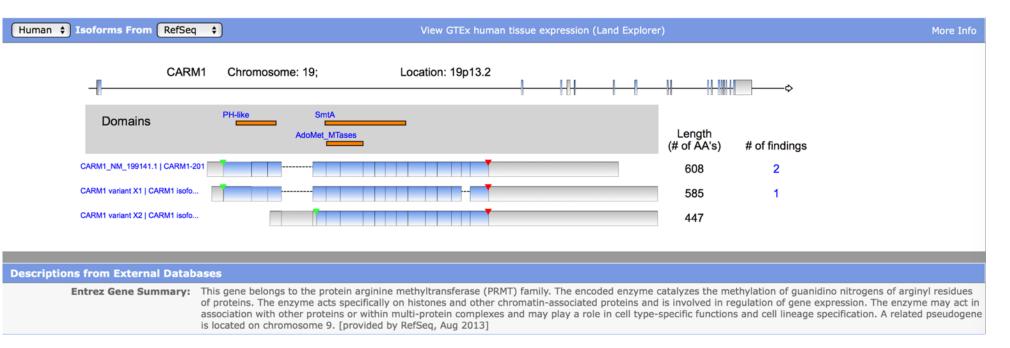
- CP (Canonical Pathways)
- UR (Upstream Regulators)
- DE (Downstream Effects)
- CN (Causal Networks)


Analysis Match: Postnatal mouse heart day 23 vs. precomputed datasets

Filtering with unique criteria on overall Z-score indicating highest similar pattern possible between day 23 vs day 1 and others precomputed analyses. Z-score % > 60

Analysis Match: Postnatal mouse heart day 23 vs. precomputed datasets

Highest similarity at Canonical Pathways, Upstream Regulators, Causal Networks and Diseases & Functions is found with a cancer dataset.

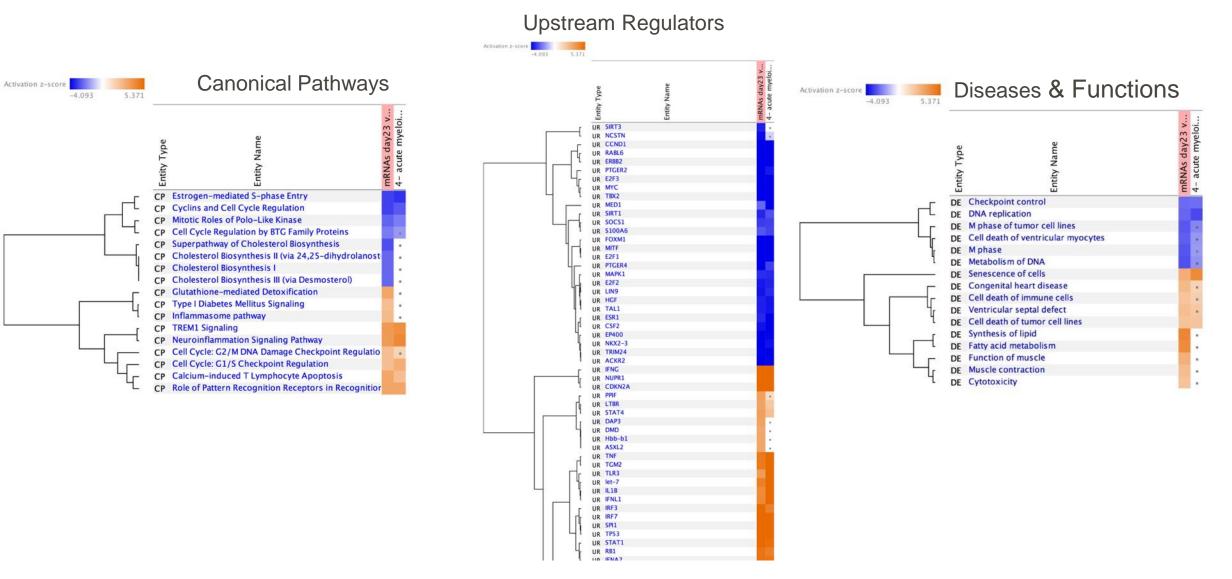


What we know about CARM1...

CARM1 is an important regulator in embryonic development and cellular differentiation.

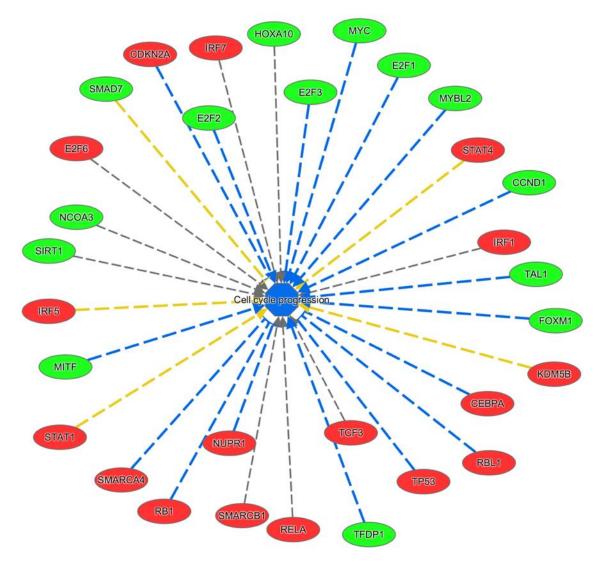
- CARM1 is "Co-activator-associated arginine methyltransferase 1"
- CARM1 adds asymmetric demethylation to arginine residues in histones, with specificity for H3R17 and H3R26 and other protein substrates (RUNX1, and members of the SWI/SNF...).
- CARM1 regulates critical cellular processes such as RNA splicing and autophagy.
- In solid tumors, overexpression of CARM1 correlates with cancer cell proliferation, metastasis, and poor survival outcomes.

Unique analysis sharing similar pattern with mRNA day 23 is GS103528


GSE103528: CARM1 is essential for myeloid leukemogenesis but dispensable for normal hematopoiesis

Greenblatt SM et al. Cancer Cell, 2018.

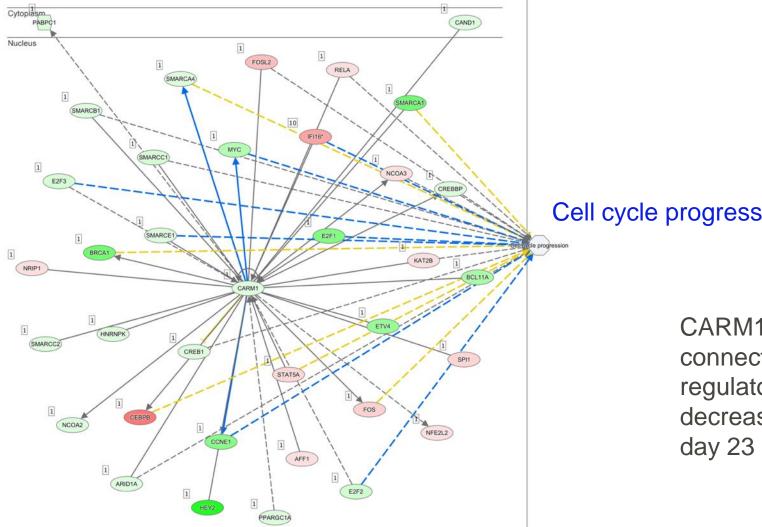
- 3 leukemia cell lines treated with short hairpin inhibition of CARM1 or short hairpin scramble control.
- Knockdown of CARM1 impairs cell cycle progression, induces apoptosis and downregulated E2F target genes in leukemia cell lines


Hypothesis: CARM1 may be involved as well in the post-natal mouse heart biology

Knockdown of CARM1 induces a similar program to day 23 post-natal heart

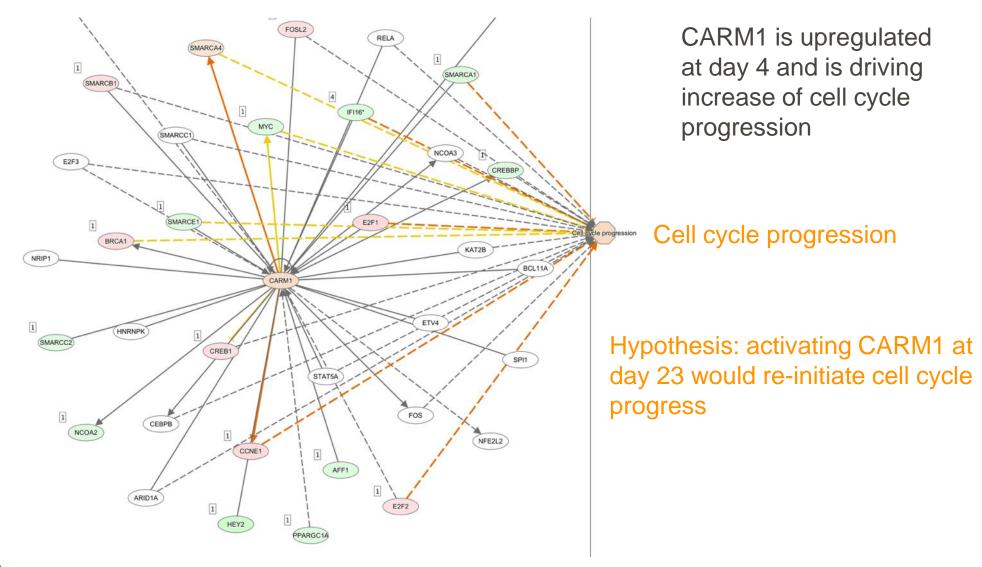
QIAGEN

Upstream Regulator Analysis indicates inhibition of cell cycle progression



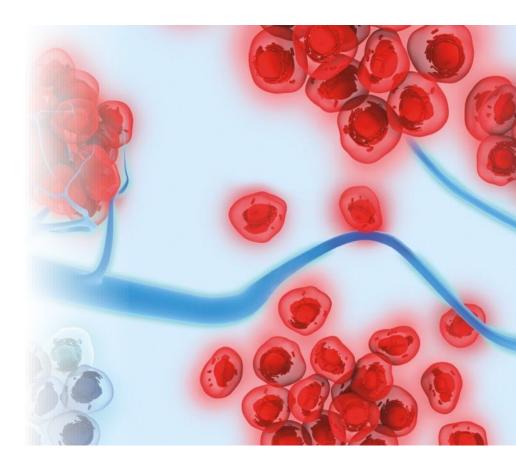
All upstream regulators (only transcription factors) predicted to be inhibited and activated at day 23 vs day 1

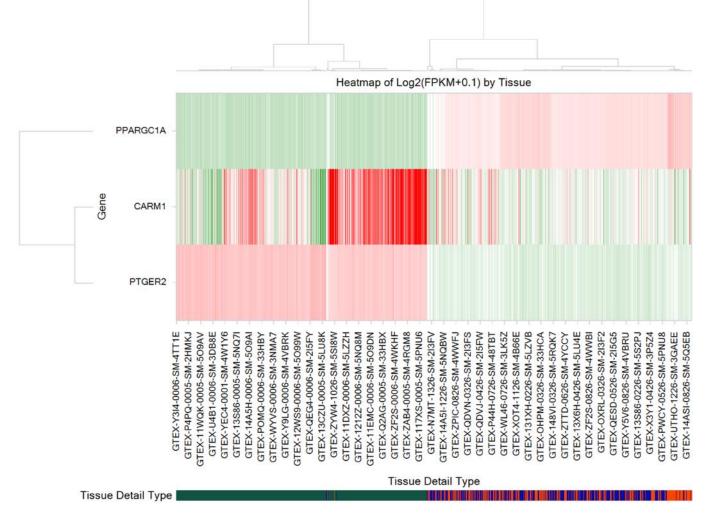
Cell cycle progression decreased


CARM1 itself is downregulated in post-natal mouse heart at day 23

Cell cycle progression

CARM1 (down-regulated) is connected to transcription regulators and induces a decrease of cycle progression at


Activation of CARM1 may allow cell cycle to progress again

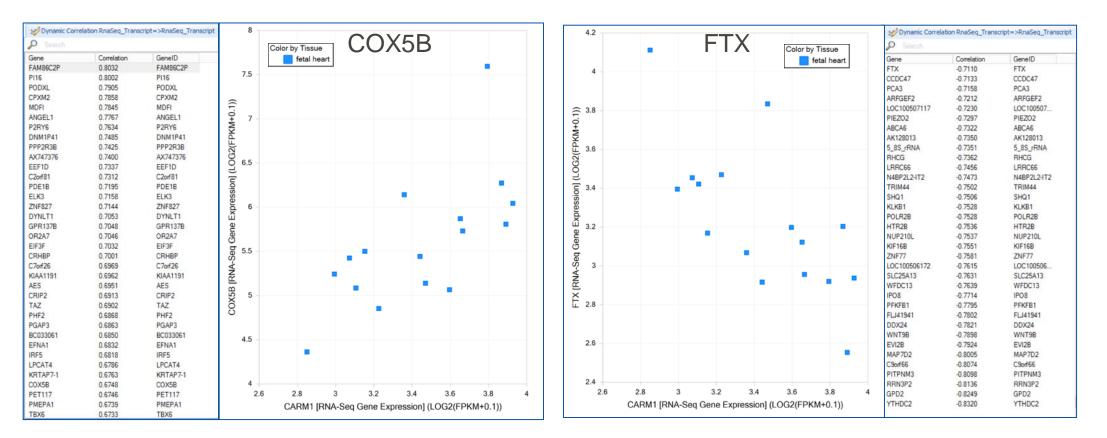

Visualize the connections of important genes in fetal heart and post-natal mouse heart

OmicSoft

Expression of important genes in GTEX and connections to predictions

CARM1, PPARGC1A, and PTGER2 expression profile in normal heart tissue or in blood

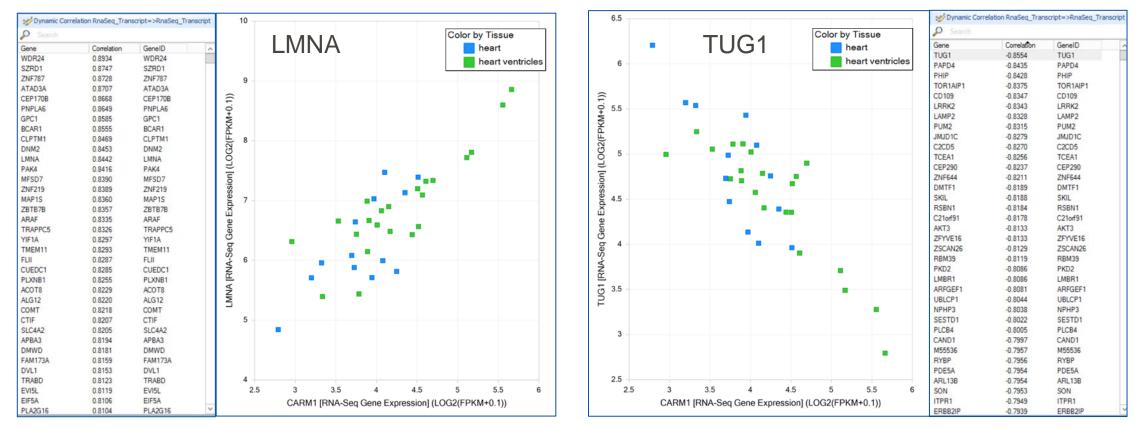
PPARGC1A is enriched in heart and predicted to be activated at day 23


CARM1A is not enriched in heart and down-regulated at day 23

PTGER2 is not enriched in heart and predicted to be inhibited at day 23

Dynamic correlation with CARM1 in fetal heart

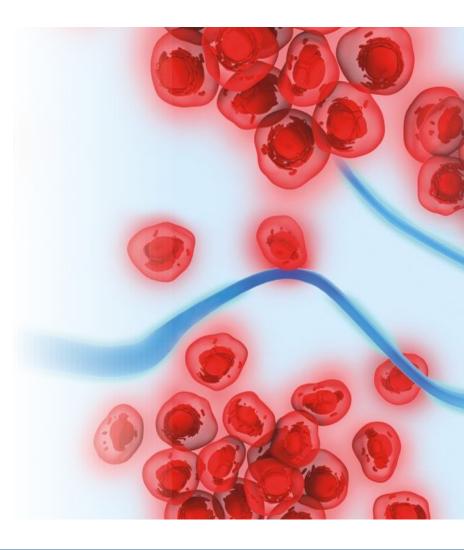
COX5B is positively correlated with CARM1 and FTX is negatively correlated with CARM1.


COX5B is correlated with CARM1 in fetal heart and is the terminal enzyme in the mitochondrial respiratory chain. FTX is a long non-coding RNA is involved in cardiomyocyte apoptosis and is inversely correlated with CARM1.

Sample to Insight -

Dynamic correlation with CARM1 in post-natal heart

Laminin A is correlated positively with CARM1, TUG1 is negatively correlated with CARM1 in adult heart.


LMNA is correlated with CARM1 in adult heart and is important in structural scaffolding of nuclear lamina. TUG1 is a long-non-coding RNA and is participating in hypoxia mechanism in myocardial injury involving WNT pathway essential in heart development.

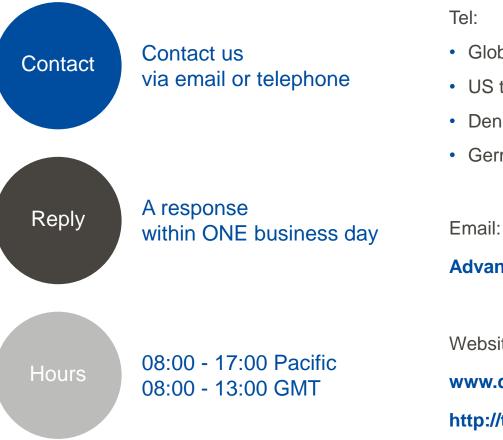
Sample to Insight

Conclusion: Multi-omics analyses in postnatal mouse heart

- A potential transcriptional program with TFs (PPARGC1A, PPARGC1B, etc.) is detected and drives the metabolism switch in post-natal heart
- One master regulator, PTGER2, is predicted to be inhibited at day 23, its activation could revert the arrest of cell cycle in post-natal heart
- Four isoforms connected to heart development are specifically down-regulated in post-natal heart (ALDH1A2-201, BIRC5-201, CCNA2-201, E2F2-201)
- A common signature between post-natal mouse heart and AML was detected, this signature indicates CARM1 as a major player in cell cycle progression in post-natal heart
- CARM1 is correlated with important genes involved in myocardial function or structure (COX5B, FTX, LMNA, TUG1)

Conclusion

Secondary analysis in Array Studio of RNAseq data


- Find differentially-expressed genes/transcripts
- Send the data to IPA

Biological interpretation of the whole transcriptome, proteome, and metabolome

- Identify significantly differentially expressed isoforms and their association to post-natal mouse heart
- Generate novel regulatory networks as hypotheses suggesting drivers of the expression changes observed in postnatal mouse heart.
- Compare this analysis across a repository of processed datasets from OmicSoft Lands (Analysis Match)
- Visualize a specific gene of interest in OmicSoft Lands

Customer support and additional resources

- Global: +1 (650) 381-5111
- US toll free: +1 (866) 464-3684
- Denmark toll free: +45 80 82 01 67
- German toll: +49 (0)341 33975301

AdvancedGenomicsSupport@qiagen.com

Websites:

www.qiagenbioinformatics.com http://tv.qiagenbioinformatics.com

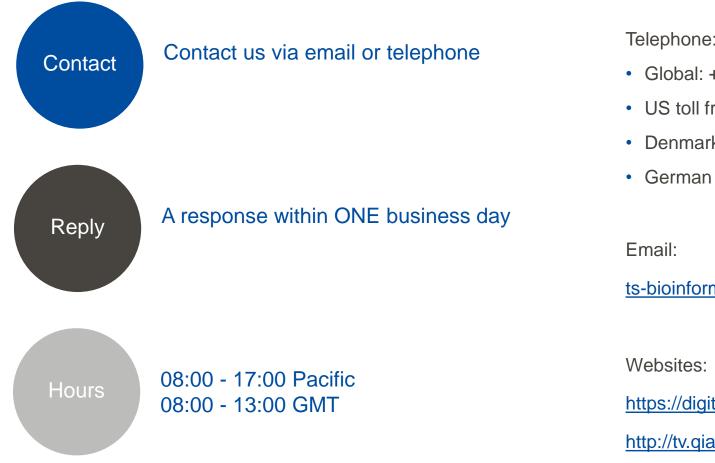
Resources

QIAGEN IPA

- IPA product info: https://digitalinsights.giagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/giagen-ipa
- IPA Analysis Match: <u>https://tv.qiagenbioinformatics.com/video/37242337/exploring-ipas-analysis-match-an</u>
- Land Explorer: https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/content-exploration-and-databases/qiagen-omicsoft-land-explorer/
- Coronavirus Network Explorer: <u>https://digitalinsights.qiagen.com/coronavirus-network-explorer/</u>

QIAGEN OmicSoft:

• Product Info: <u>https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/qiagen-omicsoft/</u>


QIAGEN CLC Genomics

Product info: <u>https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/</u>

QIAGEN expands integrated coronavirus NGS and software solutions to accelerate COVID-19 research

- <u>QIAseq SARS-CoV-2 Primer Panel converts viral RNA samples into libraries ready for sequencing</u>
- QIAGEN Digital Insights solutions support COVID-19 drug, vaccine and epidemiology research
- For an overview of QIAGEN's coronavirus testing solutions, please visit <u>http://www.qiagen.com/coronavirus</u>.
- To explore QIAGEN's NGS-specific solutions for COVID-19 research, please visit <u>https://go.qiagen.com/CoronavirusNGS</u>
- For details of QIAGEN's SARS-CoV-2 Whole Genome Sequencing Service, please visit <u>https://www.qiagen.com/applications/genomic-services/sars-cov-2-whole-genome-sequencing-services</u>

Customer support and additional resources

Telephone:

- Global: +1 (650) 381-5111
- US toll free: +1 (866) 464-3684
- Denmark toll free: +45 80 82 01 67
- German toll: +49 (0)341 33975301

ts-bioinformatics@giagen.com

https://digitalinsights.giagen.com/

http://tv.giagenbioinformatics.com

Trademarks: QIAGEN[®], Sample to Insight[®], QIAamp[®], QIAseq[®], QIAsymphony[®], EZ1[®], Ingenuity[®], IPA[®], QCI[®], RNeasy[®] (QIAGEN Group); Illumina[®] (Illumina, Inc.); PAXgene[®] (PreAnalytiX GmbH); Thermo Fisher[®] (Thermo Fisher Scientific[®]). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-14307-001 © 2020, QIAGEN, all rights reserved.

Sample to Insight