
Sample to Insight

Application Note

CLC Server Command Line Tools: a powerful choice to optimize
your analyses

Francesco Lescai, Winnie Ridderberg, Leif Schauser, Jonathan Jacobs

QIAGEN® Bioinformatics – Aarhus, Denmark

Introduction

CLC Command Line Tools is a client interface for CLC enter-

prise products, allowing users to carry out server-based

analyses, workflow execution, data import and export, and

various other data operations via the command line. These

commands can then be included within wrapper scripts

written in bash, python, Perl, R, and many others. The CLC

Command Line Tools act as a client to the CLC Genomics

Server, just like the CLC Genomics Workbench which is

the graphical software user interface client more commonly

used with CLC Servers.

The CLC Command Line Tools provide flexible access to

CLC Server commands and workflows enabling scalable

enterprise-wide solutions. The command line to CLC appli-

cations can be integrated into a wide range of scripting

languages common in Biology and Bioinformatics.

In this Application Note we will cover four different use case

examples, as summarized in the following Table:

Use-Case Examples

1. Optimizing seed length in
taxonomic classification of
microbial communities

How to loop over different seed lengths in order to optimize taxonomic profiling launching one single tool

2. Optimizing variant calling
settings for CRISPR analysis

How to loop over different probability thresholds, in order to optimize the highly sensitive identification of CRISPR-
induced mutations in an NGS read mapping, using a simple workflow

3. Running the command line
tool from any programming
language

How to embed a call to CLC Server Command Line Tools in a script written in any programming language

4. Optimizing variant filtering
parameters to improve
accuracy

How to use a number of nested loops, in order to run multiple combinations of selected filtering parameters, and
optimise a complex workflow to filter genetic variants

2 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

Figure 1. Clicking on the New configuration button under the External Applications tab opens up a form for configuring a tool or script as an external appli-
cation. After configuration is complete, it will be available for use by CLC Genomics Workbench users logged into the CLC Genomics Server and by CLC
Server Command Line Tools users.

Running CLC Server Command Line Tools

Like the CLC Genomics Workbench client, the CLC Command

Line Tools need to be installed on the computer the user wants

to execute them from. Installer files can be downloaded for all

operating systems from the web page www.qiagenbioinfor-

matics.com/products/clc-server-command-line-tools/.

Once the installation is complete, the user can generate a

token to access the CLC Genomics Server without writing

the password in clear, by using the command:

clcserverkeystore -g

This will prompt a request for the password, which will

remain hidden, and generate a token the user can pass to

the command line in the following steps. A key difference to

the CLC Genomics Workbench client is that the Command

Line Tools need to be run interactively in order to execute a

process on the Server. For this reason, when the user needs

to run tools or workflows with a long execution time, we

suggest to run them in background (either using a screen or

nohup) on a computer that remains connected to the Server.

Executing commands is straightforward, requiring only

some familiarity with the terminal and command line.

The user can quickly visualize the tools and workflows avail-

able on the server, by typing the commands:

clcserver \

-S yourserver \

-U youruser \

-W XXX-PASS-TOKEN-AAAA-BBB \

[-G your_grid_queue]

The list of commands will be different depending on the

choice of the -G option that enables running jobs on a com-

puting grid. Depending on the server configuration, some

tools or workflows might be available only for execution in

a grid environment1.

Generally, tools and workflows might require input files or

destination folders referring to a specific location: a consis-

tent way of formatting the location path is represented in

Figure 1.

Figure 1. Format of CLC locations path

Should the user be in doubt about the location path, each

location that is configured on the Server can be visualized

on the CLC Genomics Server web interface: under the tab

“Element Info”, both the human readable path, as well as

the CLC object location can be visualized and copied to be

used in the command line, as shown in Figure 2.

Figure 2. Element Info tab on the server, showing the CLC location path for
any configured location.

1 The complete list of commands is available at http://resources.qiagenbioinformatics.com/manuals/clcservercommandlinetools/current/index.
php?manual=Usage_CLC_Genomics_Server.html

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 3

Use Case Example 1: Optimizing seed length in taxonomic classification of microbial communities

Taxonomic profiling of whole shotgun metagenomic NGS

data can be based on mapping reads to a database of

reference genomes. A single parameter is customizable for

the read mapping – the minimum seed length. The seed

length defines the minimum length for a match against the

reference. If no match of this length against the reference

can be found, the read is considered unmapped. Increasing

the seed length will increase precision of results with fewer

hits, but also potentially more false negatives. Lowering the

seed length will increase the recall but at the cost of more

potentially false positive results. Adjusting the minimum seed

length can therefore be used to finding the optimal balance

between precision and recall for a given dataset.

In the current example, we have used sequencing data

from a standardized mock community provided by the NIH

Human Microbiome Project (SRR172902). The mock com-

munity consists of 21 bacterial species in even mixture.

The taxonomic profiler identified all 21 bacterial species

regardless of the minimum seed length. However, the

number of false positive results decreased with increasing

minimum seed length, reducing the number of false positive

predictions from 19 at the lowest seed length of 22 to 11

at the higher seed lengths of 38 and 46. Iterating over the

minimum seed length (Table 2) reveals the benefits of using

the command line tools within an iteration loop to efficiently

explore a range of parameters and optimize a workflow for

a specific use case.

Minimum seed
length [nt]

No. reads
matching refer-
ence database

No. unclassified
reads

Classifications at
family level

Classifications at
genus level

Classifications at
species level

True positive
detections at
species level

False positive
detections at
species level

22 5,931,034 621,526 21 21 40 21 19

30 5,600,827 951,733 18 18 33 21 12

38 5,165,921 1,386,639 18 18 32 21 11

46 4,598,360 1,954,200 18 18 32 21 11

Table 2: Taxonomic classifications of a mock community in response to changing the seed length.

4 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

An example of the code necessary to run a single tool, in

order to obtain the results shown above can be found in

Code Box 1. We have scripted a simple bash loop on the

value of an array, which contains the different seed values

we wanted to test.

Code Box 1: Running the Taxonomic Profiling tool

seedArray=(22 30 38 46)

for seed in "${seedArray[@]}"

do

echo "executing taxo profile with seed value ${seed}" >>taxo.log

creating a folder for each group of results

clcserver \

-S yourserver \

-U youruser \

-W XXX-PASS-TOKEN-AAAA-BBB \

-A mkdir \

-n Results_seed${seed} \

-t clc://yourserlver:7777/your_location/file/microbial

launching the tool and setting destination to newly created folder

clcserver \

-S yourserver \

-U youruser \

-W XXX-PASS-TOKEN-AAAA-BBB \

-G your_grid_queue \

-A taxonomic_profiling \

-d clc://yourserlver:7777/your_location/file/microbial/Results_seed${seed} \

--references clc://yourserlver:7777/your_location/file/microbial/Microbial_genome_database \

-i clc://yourserlver:7777/your_location/file/microbial/HMP_even_illum_SRR172902_trimmed \

--min-seed-length ${seed}

done

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 5

The example in Code Box 1 also shows how the user can

combine several commands in the same bash script; in this

case, the chosen tool does not create a new folder to save

the results in. Thus, we have added a preliminary step in the

code to create a new folder, and then we have used it as

destination for the results. With this choice, we can clearly

identify the results obtained by running different parameters.

Use Case Example 2: optimizing variant calling settings for CRISPR analysis

The use of the CLC Command Line Tools is not limited to

executing single tools, but can be extended to the workflow

system available in the CLC Genomics Workbench and CLC

Genomics Server environments. In order to view the work-

flows installed on the server, the user can use the command

“-A list_workflows”: the name of the installed workflow might

be different from the one visible from the Workbench.

In this use case example, we analysed data from an experi-

ment where the authors wished to test the efficiency of differ-

ent variants of cas9 (nuclease and nickases)1. We designed

an example workflow (Figure 3) for trimming NGS reads,

map them to the reference, realign the reads and finally

call the variants using the Low Frequency Variant Detection

caller.

The aim was to test the effect of using different thresholds

in the probability of the variant calling, and assess how this

parameter change affects which mutations are called.

Figure 3. Example workflow to identify CRISPR-induced mutations

6 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

Code Box 2 shows the syntax of the code in Bash, used to

run the workflow from the command line. Executing a work-

flow is just as easy as the execution of a single tool. During

the design of the workflow, all parameters configured as

“open” in the workflow settings will appear in the help mes-

sage of the command line, and the requested input will be

described. A default can also be defined, for the values of

each of the open parameters.

In the workflow shown in Figure 3, we also created a

genome view (Track List), which allows easy inspection of

the results. Figure 4 shows the effect of changing the signifi-

cance parameters, and we can quickly observe how increas-

ing the significance threshold leads to the identification of a

larger number of CRISPR-induced variants.

Code Box 2: Optimizing calling significance threshold in Bash

sigArray=(5 10 15 20 25 30 35 40 45 50)

for sigValue in "${sigArray[@]}"

do

echo "executing sig = ${sigValue}" >>crispr_loop.log

clcserver \

-S yourserver \

-U youruser \

-W XXX-PASS-TOKEN-AAAA-BBB \

-A wf-company-workflow-name \

-G your_grid_queue \

--sequence-fastq-workflow-input clc://yourserlver:7777/your_location/file/CRSPR/110413_6_JY747_GCCAAT_L001_

R1_001 \

-d clc://yourserlver:7777/your_location/file/CRSPR \

--low-frequency-variant-detection-required-significance ${sigValue} \

--reads-track-custom-output-name /sig${sigValue}/mapping_sig${sigValue} \

--report-custom-output-name /sig${sigValue}/report_sig${sigValue} \

--track-list-custom-output-name /sig${sigValue}/browser_sig${sigValue} \

--variant-track-custom-output-name /sig${sigValue}/variants_sig${sigValue}

done

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 7

Figure 4. Effect of different significance thresholds in the number of variants identified

Use Case Example 3: running the command line tool from any programming language

The CLC Server Command Line Tools invokes a system com-

mand. For this reason, the users are not bound to use only

Bash, but have the flexibility to launch a system command

from any programming language available.

In the following boxes we used the same code presented

in the previous Use Case Example 2, and translated it from

Bash into Python (Code Box 3), Perl (Code Box 4) and R

(Code Box 5).

8 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

Code Box 3: Embedding a call to CLC Command Line Tools in Python

#!/usr/bin/python

import os

input = "clc://yourserlver:7777/your_location/file/CRSPR/110413_6_JY747_GCCAAT_L001_R1_001"

destination = "clc://yourserlver:7777/your_location/file/CRSPR/"

params = [25, 50]

for param in params:

 outreads = "/PY/sig" + str(param) + "/mapping_sig" + str(param)

 outname = "/PY/sig" + str(param) + "/report_sig" + str(param)

 outrack = "/PY/sig" + str(param) + "/browser_sig" + str(param)

 vartrack = "/PY/sig" + str(param) + "/variants_sig" + str(param)

 print("executing on param = " + str(param))

 print("outreads = " + outreads)

 command = clcserver \

 -S yourserver \

 -U youruser \

 -W XXX-PASS-TOKEN-AAAA-BBB \

 -G your_grid_queue -A wf-company-workflow-name \

 --sequence-fastq-workflow-input " + input + " -d " + destination + " \

 --low-frequency-variant-detection-required-significance " + str(param) + " \

 --reads-track-custom-output-name " + outreads + " \

 --report-custom-output-name " + outname + " \

 --track-list-custom-output-name " + outrack + " \

 --variant-track-custom-output-name " + vartrack

 print(command)

 os.system(commands

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 9

Code Box 4: Embedding a call to CLC Command Line Tools in Perl

#!/usr/bin/perl

use strict;

use warnings;

my $input = "clc://yourserlver:7777/your_location/file/CRSPR/110413_6_JY747_GCCAAT_L001_R1_001";

my $destination = "clc://yourserlver:7777/your_location/file/CRSPR/";

my @params = (25, 50);

foreach my $param (@params){

 my $outreads = "/PY/sig$param/mapping_sig$param";

 my $outname = "/PY/sig$param/report_sig$param";

 my $outrack = "/PY/sig$param/browser_sig$param";

 my $vartrack = "/PY/sig$param/variants_sig$param";

 print STDERR "executing on param = $param\n";

 print STDERR "outreads = $outreads\n";

 my $command = "clcserver \\

 -S yourserlver \\

 -U youruser \\

 -W XXX-PASS-TOKEN-AAAA-BBB \\

 -G your_grid_queue -A crispr-workflow \\

 --sequence-fastq-workflow-input $input -d $destination \\

 --low-frequency-variant-detection-required-significance $param \\

 --reads-track-custom-output-name $outreads \\

 --report-custom-output-name $outname \\

 --track-list-custom-output-name $outrack \\

 --variant-track-custom-output-name $vartrack";

 print STDERR $command."\n";

 system($command);

}

10 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

Code Box 5: Embedding a call to CLC Command Line Tools in R

#!/usr/bin/Rscript

input = "clc://yourserlver:7777/your_location/file/CRSPR/110413_6_JY747_GCCAAT_L001_R1_001"

destination = "clc://yourserlver:7777/your_location/file/CRSPR/"

params = c(25,50)

for (param in params){

 outreads = paste0("/PY/sig", param, "/mapping_sig", param)

 outname = paste0("/PY/sig", param, "/report_sig", param)

 outrack = paste0("/PY/sig", param, "/browser_sig", param)

 vartrack = paste0("/PY/sig", param, "/variants_sig", param)

 writeLines(paste0("executing on param ", param))

 writeLines(paste0("outreads = ", outreads))

 command = paste0("clcserver ",

 "-S yourserlver ",

 "-U youruser ",

 "-W XXX-PASS-TOKEN-AAAA-BBB ",

 "-G your_grid_queue -A crispr-workflow ",

 "--sequence-fastq-workflow-input ", input, " -d ", destination,

 " --low-frequency-variant-detection-required-significance ", param,

 " --reads-track-custom-output-name ", outreads,

 " --report-custom-output-name ", outname,

 " --track-list-custom-output-name ", outrack,

 " --variant-track-custom-output-name ", vartrack)

 writeLines(command)

 system(command)

}

These examples show the wide range of opportunities to integrate CLC Server Command Line tools.

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 11

Use Case Example 4: optimizing variant filtering parameters to improve accuracy

The flexibility of the CLC Server Command Line Tools allows

users to expand their applications to complex workflows and

use the command line to perform parameter sweeps.

In order to show a more complex example, we have

designed a workflow (Figure 5) that accepts the variants

called from the exome derived NGS sequences of the

NA12878 DNA standard sample as input, and differentially

filters SNVs and INDELs as a function of three parameters for

each variant type.

In order to assess the effect of the large number of combina-

tions of those six parameters, at each execution the workflow

compares the results with the validated set of variants from

Genome in a Bottle in high-confidence regions, generating

tracks for the false positives (FPs), false negatives (FNs) and

true positives (TPs).

Figure 5. Example of workflow used for differentially filtering variants, and compared with validated variants (truth) in order to calculate accuracy (F1 score)

12 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

In order to create all possible combinations, and to optimize

the filtering parameters, we have created six different arrays

containing the values we want to test. We then launched

the workflow inside nested loops which created the combi-

nations of all values. An example of the code is shown in

Code Box 6.

In the following example, we have used acronyms for each

parameter: average quality (AvQ), read direction test (RDT),

read position test (RPT); we have appended the parameter

acronym to the variant type we used it for: small for SNVs

and large for INDELs.

Code Box 6: Optimizing variant filters in Bash, in a set of nested loops

Code Box 6: Optimizing variant filters in Bash, in a set of nested loops

AvQSmallArray=(30 35 40)

RDTSmallArray=(0.00001 0.0000001)

RPTSmallArray=(0.00001 0.0000001)

AvQLargeArray=(25 35)

RPTLargeArray=(0.01 0.00001)

RDTLargeArray=(0.01 0.00001)

for AvQSmall in "${AvQSmallArray[@]}"

do

for RDTSmall in "${RDTSmallArray[@]}"

do

for RPTSmall in "${RPTSmallArray[@]}"

do

for AvQLarge in "${AvQLargeArray[@]}"

do

for RPTLarge in "${RPTLargeArray[@]}"

do

for RDTLarge in "${RDTLargeArray[@]}"

do

BaseName="AvQSmall${AvQSmall}_RDTSmall${RDTSmall}_RPTSmall${RPTSmall}_AvQLarge${AvQLarge}_

RPTLarge${RPTLarge}_RDTLarge${RDTLarge}"

echo "testing now $BaseName"

echo "testing now $BaseName" >>loop_log.txt

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 13

Executing the same workflow inside six nested loops gen-

erates a large number of combinations of parameters:

for each combination we counted the number of TPs, FPs

and FNs, calculated sensitivity and precision, and finally

computed the accuracy (F1 score). This approach allows

one to select the best combination of filtering parameters to

optimise the accuracy of variant calling and filtering.

In addition to selecting the best combination of parameters,

the generation of a large set of results can also be used to

further investigate the importance of each of the param-

eters on the accuracy of the results. To this aim, the data

was analysed using R with the Boruta package2, which

has developed an algorithm extending the Random Forest

approach. This method creates “shadow variables” for each

attribute by random shuffling its values across the objects,

and using these artificial variables to improve the estimation

of the importance of each parameter.

clcserver \

-S yourserver \

-U youruser \

-W XXX-PASS-TOKEN-AAAA-BBB \

-A wf-company-workflow-name \

-G your_grid_queue \

--filter-input-workflow-input clc://yourserlver:7777/your_location/file/name \

-d clc://yourserlver:7777/your_location/file/var-filtering \

--filtered-variant-track-filter-output "/${BaseName}/${BaseName}_filtered" \

--identify-indels-to-be-removed-indel-criteria "any{Average quality < $AvQLarge}{Read position test probability < $RPTLarge}

{Read direction test probability < $RDTLarge}" \

--identify-snvs-to-be-removed-snv-criteria "any{Read position test probability < $RPTSmall}{Read direction test probability <

$RDTSmall}{Average quality < $AvQSmall}" \

--variant-track-2-fns "/${BaseName}/${BaseName}_FNs" \

--variant-track-fps "/${BaseName}/${BaseName}_FPs" \

--variant-track-1-tps "/${BaseName}/${BaseName}_TPs"

done

done

done

done

done

done

14 Using CLC Command Line Tools to optimize your analyses parameters 02/2019

In our hypothetical example, we have identified the thresh-

old for the average quality, applied to SNVs, as the param-

eter that most influences the accuracy of the results.

Conclusions

In this application note we demonstrate the flexibility and

power of the CLC Server Command Line Tools. Users with a

minimum knowledge of the command line, or any program-

ming language, can quickly access all features available in

the CLC Genomics Server, without the use of a graphical

interface.

CLC Server Command Line Tools represent an opportunity

to address the needs of a more demanding bioinformatics

environment and enterprise scenarios, where automation,

integration with other pipelines and optimization of the

workflows are particularly important.

The examples in this application note can be used as a

template for further developing the code, thus allowing users

to quickly get started and get the most out of this additional

tool.

Av
Q

La
rg

e

R
D

TS
m

al
l

R
D

TL
ar

ge

sh
ad

ow
M

in

R
PT

La
rg

e

R
PT

Sm
al

l

sh
ad

ow
M

ea
n

sh
ad

ow
M

ax

Av
Q

Sm
al

l

0

10

20

30

40

50

60

Variable Importance

Im
po

rta
nc

e

Figure 6. Output of Boruta package in R, showing the importance of the different parameters in influencing the accuracy of the results

References

1. Güell, M., Yang, L. & Church, G. M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014).

2. Kursa, M. B. & Rudnicki, W. R. Feature Selection with the Boruta Package. Journal of Statistical Software 36, 1–13 (2010).

Using CLC Command Line Tools to optimize your analyses parameters 02/2019 15

1117004 02/2019

Ordering www.qiagen.com/shop Technical Support support.qiagen.com Website www.qiagen.com

Trademarks: QIAGEN®, Sample to Insight®, GeneGlobe®, Ingenuity®, QCI™, QIAseq™ (QIAGEN Group); Horizon™ (Horizon Discovery); Illumina®, MiSeq® (Illumina, Inc.); SeraCare®, Seraseq™ (SeraCare Life Sciences,
Inc); Ion Torrent® (Thermo Fisher Scientific or its subsidiaries).

© 2019 QIAGEN, all rights reserved. PROM-13601-001

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user

manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN

Technical Services or your local distributor.

Discover more at www.qiagenbioinformatics.com

To learn more, have a look at these informative tools:

Web resources

CLC Genomics Workbench

www.qiagenbioinformatics.com/products/clc-genomics-workbench

CLC Server Command Line Tools

www.qiagenbioinformatics.com/products/clc-server-command -line-tools

CLC Microbial Genomics Module

www.qiagenbioinformatics.com/products/clc-microbial-genomics-module

Tutorials

www.qiagenbioinformatics.com/support/tutorials

